A Survey of Gaussian Convolution Algorithms
暂无分享,去创建一个
[1] B. Berndt. Ramanujan’s Notebooks: Part V , 1997 .
[2] Atsushi Imiya,et al. Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.
[3] Lucas J. van Vliet,et al. Recursive implementation of the Gaussian filter , 1995, Signal Process..
[4] Tony Lindeberg,et al. On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.
[5] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[6] H. Weyl. Gruppentheorie und Quantenmechanik , 1928 .
[7] Sovira Tan,et al. Performance of three recursive algorithms for fast space-variant Gaussian filtering , 2003, Real-time imaging.
[8] Bill Triggs,et al. Boundary conditions for Young-van Vliet recursive filtering , 2006, IEEE Transactions on Signal Processing.
[9] Martin Vetterli,et al. Fast Fourier transforms: a tutorial review and a state of the art , 1990 .
[10] Lucas J. van Vliet,et al. Recursive Gaussian derivative filters , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).
[11] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[12] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Wesley E. Snyder,et al. Stacked Integral Image , 2010, 2010 IEEE International Conference on Robotics and Automation.
[14] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] Michael Unser,et al. Fast Space-Variant Elliptical Filtering Using Box Splines , 2010, IEEE Transactions on Image Processing.
[16] Jezekiel Ben-Arie,et al. Lattice architectures for multiple-scale gaussian convolution, image processing, sinusoid-based transforms and gabor filtering , 1993 .
[17] Joachim Weickert,et al. Theoretical Foundations of Gaussian Convolution by Extended Box Filtering , 2011, SSVM.
[18] Stephen A. Martucci,et al. Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..
[19] William M. Wells,et al. Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[20] R. Deriche. Recursively Implementing the Gaussian and its Derivatives , 1993 .
[21] Lucas J. van Vliet,et al. Recursive Gabor filtering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.
[22] L. Álvarez,et al. Signal and image restoration using shock filters and anisotropic diffusion , 1994 .
[23] Alireza Tavakkoli,et al. Accurate and Efficient Computation of Gabor Features in Real-Time Applications , 2009, ISVC.
[24] John F. Canny,et al. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Jinhee Yi,et al. Theta-function identities and the explicit formulas for theta-function and their applications , 2004 .
[26] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[27] Michael Werman,et al. Efficient and accurate Gaussian image filtering using running sums , 2011, 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA).
[28] Tony Lindeberg,et al. Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[29] David G. Lowe,et al. Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.