Solar Forcing for CMIP6 (v3.1)

This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850–2014), and future (2015–2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models. For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2–NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m−2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m−2. In the 200–400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %). We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry–climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day−1 at the stratopause), cooler stratospheric temperatures (−1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (−3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day−1 at the stratopause), temperatures ( ∼  1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset. CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry–climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.

[1]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[2]  M. Kunze,et al.  The representation of solar cycle signals in stratospheric ozone – Part 2: Analysis of global models , 2017, Atmospheric Chemistry and Physics.

[3]  J. Aubert Geomagnetic forecasts driven by thermal wind dynamics in the Earth's core , 2015 .

[4]  M. Lockwood,et al.  Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 4: Near-Earth solar wind speed, IMF, and open solar flux , 2014 .

[5]  E. Rozanov,et al.  Influence of Galactic Cosmic Rays on atmospheric composition and dynamics , 2011 .

[6]  P. Charbonneau,et al.  A Reconstruction of Ultraviolet Spectral Irradiance During the Maunder Minimum , 2014 .

[7]  S. Solanki,et al.  Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI and SDO/HMI observations , 2014, 1408.1229.

[8]  Douglas V. Hoyt,et al.  Group Sunspot Numbers: A New Solar Activity Reconstruction , 1998 .

[9]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[10]  Brian Hamilton,et al.  International Geomagnetic Reference Field: the 12th generation , 2015, Earth, Planets and Space.

[11]  David Rind,et al.  How will Earth's surface temperature change in future decades? , 2009 .

[12]  J. Zawodny,et al.  Two‐dimensional and three‐dimensional model simulations, measurements, and interpretation of the influence of the October 1989 solar proton events on the middle atmosphere , 1995 .

[13]  F. Axisa SOLAR PROTON EVENTS. , 1968 .

[14]  L. Lefèvre,et al.  Uncertainties in the Sunspot Numbers: Estimation and Implications , 2016, 1608.05261.

[15]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[16]  J. Haigh,et al.  The Impact of Solar Variability on Climate , 1996, Science.

[17]  P. Bernath,et al.  NOx descent in the Arctic middle atmosphere in early 2009 , 2009 .

[18]  J. Haigh,et al.  The impact of solar variability on the middle atmosphere in present-day and pre-industrial atmospheres , 2005 .

[19]  G. Meehl,et al.  Could a future “Grand Solar Minimum” like the Maunder Minimum stop global warming? , 2013 .

[20]  J. Allen,et al.  Radiation Around the Earth to a Radial Distance of 107,400 km. , 1959, Nature.

[21]  P. Bernath,et al.  Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005 , 2007 .

[22]  J. Frederick,et al.  Production of odd nitrogen in the stratosphere and mesosphere: An intercomparison of source strengths , 1980 .

[23]  P. Pilewskie,et al.  Recent variability of the solar spectral irradiance and its impact on climate modelling , 2012, 1303.5577.

[24]  Thierry Dudok de Wit,et al.  Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods , 2016 .

[25]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[26]  Mike Lockwood,et al.  Enhanced signature of solar variability in Eurasian winter climate , 2010 .

[27]  M. Storini,et al.  Ionization of the earth’s atmosphere by solar and galactic cosmic rays , 2009 .

[28]  Greg Kopp,et al.  Total solar irradiance measurements with PREMOS/PICARD , 2013 .

[29]  Universitd Paris The aa indices ' A 100-Year Series Characterizing the Magnetic Activity , 2007 .

[30]  Paul Charbonneau,et al.  Solar Dynamo Theory , 2014 .

[31]  Craig S. Long,et al.  Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets , 2015 .

[32]  M. Clilverd,et al.  Energetic particle forcing of the Northern Hemisphere winter stratosphere: comparison to solar irradiance forcing , 2014, Front. Physics.

[33]  T. Clarmann,et al.  Mesospheric and stratospheric NOy produced by energetic particle precipitation during 2002–2012 , 2014 .

[34]  G. Stiller,et al.  Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data , 2014 .

[35]  Judith Lean,et al.  Exploring the stratospheric/tropospheric response to solar forcing , 2008 .

[36]  C. Timmreck,et al.  The PMIP4 contribution to CMIP6 - Part 3: the Last Millennium, scientific objective and experimental design for the PMIP4 past1000 simulations (in open review for GMD - doi: 10.5194/gmd-2016-278) , 2016 .

[37]  Greg Kopp,et al.  The Total Irradiance Monitor (TIM): Science Results , 2005 .

[38]  L. Gray,et al.  Solar signals in CMIP‐5 simulations: effects of atmosphere–ocean coupling , 2016 .

[39]  B. Ni,et al.  Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory , 2007 .

[40]  S. Solanki,et al.  UV solar irradiance in observations and the NRLSSI and SATIRE‐S models , 2015, 1507.01224.

[41]  R. Steiger,et al.  Introduction to Cosmogenic Radionuclides , 2012 .

[42]  D. Marsh,et al.  Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005 , 2011 .

[43]  Craig J. Rodger,et al.  Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times , 2013 .

[44]  M. Freeman,et al.  Synthesis of scaling exponents: a fractional Levy model , 2005, physics/0509058.

[45]  S. Morley,et al.  A rapid, global and prolonged electron radiation belt dropout observed with the Global Positioning System constellation , 2010 .

[46]  M. Santee,et al.  The 27 day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity , 2015, Journal of geophysical research. Space physics.

[47]  Margaret Ann Shea,et al.  Magnetospheric Models and Trajectory Computations , 2000 .

[48]  Gary J. Rottman,et al.  Solar EUV Experiment (SEE): Mission overview and first results , 2005 .

[49]  Herbert M. Pickett,et al.  Production of odd hydrogen in the mesosphere during the January 2005 solar proton event , 2006 .

[50]  M. Lockwood,et al.  Predicting space climate change , 2011 .

[51]  R. Mcpeters,et al.  Effect of solar proton events on the middle atmosphere during the past two solar cycles as computed using a two‐dimensional model , 1990 .

[52]  Matthew T. DeLand,et al.  The influence of the several very large solar proton events in years 2000–2003 on the neutral middle atmosphere , 2005 .

[53]  N. Weiss,et al.  For how long will the current grand maximum of solar activity persist? , 2008 .

[54]  Patrick Jöckel,et al.  The atmospheric chemistry box model CAABA/MECCA-3.0 , 2011 .

[55]  I. Usoskin A History of Solar Activity over Millennia , 2008, Living Reviews in Solar Physics.

[56]  L. H. Weeks,et al.  Ozone Measurements in the Mesosphere During The Solar Proton Event of 2 November 1969. , 1972 .

[57]  M. Kremliovsky Limits of predictability of solar activity , 1995 .

[58]  Adam A. Scaife,et al.  A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns , 2013 .

[59]  Adam A. Scaife,et al.  Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes , 2015, Journal of geophysical research. Atmospheres : JGR.

[60]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[61]  K. Kodera,et al.  Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle , 2005 .

[62]  T. Clarmann,et al.  Hemispheric distributions and interannual variability of NOy produced by energetic particle precipitation in 2002–2012 , 2014 .

[63]  John Cook,et al.  Magnetic Sources of the Solar Irradiance Cycle , 1998 .

[64]  P. Bosch,et al.  Options for Mitigating Climate Change Results of Working Group III of the Fourth Assessment Report of the IPCC , 2011 .

[65]  C. Long,et al.  Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends , 2014 .

[66]  T. J. Keneshea,et al.  Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event , 1973 .

[67]  D. Marsh,et al.  Short- and medium-term atmospheric constituent effects of very large solar proton events , 2008 .

[68]  K. Kodera Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO , 2002 .

[69]  J. Green,et al.  A Monte Carlo simulation of the NOAA POES Medium Energy Proton and Electron Detector instrument , 2011 .

[70]  T. Clarmann,et al.  Observation of NO(x) Enhancement and Ozone Depletion in the Northern and Southern hemispheres after the October-November 2003 Solar Proton Events , 2005 .

[71]  T. Clarmann,et al.  A semi-empirical model for mesospheric and stratospheric NO y produced by energetic particle precipitation , 2016 .

[72]  D. Marsh,et al.  Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings , 2010 .

[73]  J. Lean,et al.  How Does the Sun’s Spectrum Vary? , 2012 .

[74]  T. Reddmann,et al.  Modeling disturbed stratospheric chemistry during solar-induced NOx enhancements observed with MIPAS/ENVISAT , 2010 .

[75]  S. Solanki,et al.  A physical reconstruction of cosmic ray intensity since 1610 , 2002 .

[76]  Daniel N. Baker,et al.  Precipitating electrons: Evidence for effects on mesospheric odd nitrogen , 1996 .

[77]  P. Stott,et al.  Do Models Underestimate the Solar Contribution to Recent Climate Change , 2003 .

[78]  Daniel R. Marsh,et al.  An empirical model of nitric oxide in the lower thermosphere , 2003 .

[79]  I. Whittaker,et al.  A model providing long‐term data sets of energetic electron precipitation during geomagnetic storms , 2016 .

[80]  P. Jöckel,et al.  Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index , 2010 .

[81]  E. Rozanov,et al.  Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate , 2012, Surveys in Geophysics.

[82]  S. Tobias The solar cycle: Parity interactions and amplitude modulation , 1997 .

[83]  J. Worden,et al.  Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations , 2000 .

[84]  Stefan Rahmstorf,et al.  On the effect of a new grand minimum of solar activity on the future climate on Earth , 2010 .

[85]  J. Tamminen,et al.  Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms , 2009 .

[86]  D. Marsh,et al.  NOx production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies , 2014 .

[87]  Greg Kopp,et al.  Methodology to create a new total solar irradiance record: Making a composite out of multiple data records , 2017, 1702.02341.

[88]  C. Rodger,et al.  Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation , 2013 .

[89]  L. Bengtsson,et al.  Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments , 1999 .

[90]  G. Mann,et al.  Global atmospheric particle formation from CERN CLOUD measurements , 2016, Science.

[91]  Manuel López-Puertas,et al.  Composition changes after the "Halloween" solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study , 2011 .

[92]  S. Solanki,et al.  Evolution of the solar irradiance during the Holocene , 2011, 1103.4958.

[93]  Gary J. Rottman,et al.  The Spectral Irradiance Monitor: Scientific Requirements, Instrument Design, and Operation Modes , 2005 .

[94]  D. Siskind On the coupling between middle and Upper atmospheric odd nitrogen , 2013 .

[95]  K. Petrovay,et al.  Solar Cycle Prediction , 2010, Living reviews in solar physics.

[96]  D. Nandy,et al.  Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones , 2007, 0709.1046.

[97]  C. Randall,et al.  Stratospheric NOx enhancements in the Southern Hemisphere Vortex in winter/spring of 2000 , 2001 .

[98]  T. Diehl,et al.  The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling , 2006 .

[99]  F. Vitt,et al.  A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two‐dimensional model , 1996 .

[100]  Douglas V. Hoyt,et al.  Group Sunspot Numbers: A New Solar Activity Reconstruction , 1998 .

[101]  M. Santee,et al.  Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere , 2016 .

[102]  J. Lean,et al.  Modeling the Sun’s Magnetic Field and Irradiance since 1713 , 2005 .

[103]  M. Lockwood,et al.  Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr - Part 1: A new geomagnetic data composite , 2013 .

[104]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[105]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[106]  Andrew C. Parnell,et al.  Climate Time Series Analysis: Classical Statistical and Bootstrap Methods , 2013 .

[107]  J. Neal Long-term Determination of Energetic Electron Precipitation into the Atmosphere Using Subionospheric VLF Perturbations , 2014 .

[108]  D. J. Strickland,et al.  Solar extreme ultraviolet irradiance: Present, past, and future , 2011 .

[109]  W. Schmutz,et al.  A new observational solar irradiance composite , 2016 .

[110]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[111]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[112]  S. Solanki,et al.  Towards a long-term record of solar total and spectral irradiance , 2009, 0911.4002.

[113]  E. J. Llewellyn,et al.  Ozone depletion during the solar proton events of October//November 2003 as seen by SCIAMACHY , 2005 .

[114]  Daniel R. Marsh,et al.  The 11 year solar cycle signal in transient simulations from the whole atmosphere community climate model , 2012 .

[115]  J. Green,et al.  Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere , 2010 .

[116]  P. Mayaud,et al.  Derivation, Meaning, and Use of Geomagnetic Indices , 1980 .

[117]  Luis Kornblueh,et al.  Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model , 2006 .

[118]  James M. Russell,et al.  Northern hemisphere atmospheric effects due to the July 2000 Solar Proton Event , 2001 .

[119]  J. Frederick Solar corpuscular emission and neutral chemistry in the Earth's middle atmosphere , 1976 .

[120]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during small geomagnetic storms , 2015, Geophysical research letters.

[121]  P. Bushby Zonal flows and grand minima in a solar dynamo model , 2006 .

[122]  S. Solanki,et al.  Modelling irradiance variations from the surface distribution of the solar magnetic field , 2000 .

[123]  A. Jaffe,et al.  Reconstruction of total solar irradiance 1974-2009 , 2012, 1202.3554.

[124]  S. Solanki,et al.  Unusual activity of the Sun during recent decades compared to the previous 11,000 years , 2004, Nature.

[125]  T. Dudok de Wit,et al.  A method for filling gaps in solar irradiance and solar proxy data , 2011, 1107.4253.

[126]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[127]  Gary J. Rottman,et al.  The SORCE Mission , 2005 .

[128]  D. Shindell,et al.  Solar signals in CMIP‐5 simulations: the stratospheric pathway , 2015 .

[129]  Francisco J. Doblas-Reyes,et al.  Real-time multi-model decadal climate predictions , 2013, Climate Dynamics.

[130]  P. Charbonneau,et al.  An Exploration of Non-kinematic Effects in Flux Transport Dynamos , 2012 .

[131]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[132]  Jochen Landgraf,et al.  The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP) , 2014 .

[133]  C. Brühl,et al.  Coupled chemistry climate model simulations of the solar cycle in ozone and temperature , 2008 .

[134]  C. Randall,et al.  Geomagnetic activity and polar surface air temperature variability , 2009 .

[135]  Jerald W. Harder,et al.  Regional climate impacts of a possible future grand solar minimum , 2015, Nature Communications.

[136]  T. Fuller‐Rowell,et al.  Medium energy particle precipitation influences on the mesosphere and lower thermosphere , 1997 .

[137]  S. Solanki,et al.  Evolution of the solar magnetic flux on time scales of years to millenia , 2009, 0911.4396.

[138]  J. Beer,et al.  A Phenomenological Study of the Cosmic Ray Variations over the Past 9400 Years, and Their Implications Regarding Solar Activity and the Solar Dynamo , 2013 .

[139]  C. Rodger,et al.  Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone , 2014, Nature Communications.

[140]  P.-O. Amblard,et al.  The EUV Sun as the superposition of elementary Suns , 2008, 0809.0566.

[141]  J. Laštovička,et al.  Nitric oxide and lower ionosphere quantities during solar particle events of October 1989 after rocket and ground-based measurements , 1992 .

[142]  S. Brönnimann,et al.  Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone , 2013 .

[143]  Luis Kornblueh,et al.  The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution , 2004 .

[144]  Jonathan Lifland,et al.  Solar Variability and Its Effects on Climate , 2004 .

[145]  I. Usoskin,et al.  Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications , 2006 .

[146]  K. Mursula,et al.  Spatial distribution of Northern Hemisphere winter temperatures during different phases of the solar cycle , 2014 .

[147]  D. Siskind,et al.  Observation of 27 day solar cycles in the production and mesospheric descent of EPP‐produced NO , 2015 .

[148]  N. Mahowald,et al.  PMIP4-CMIP6:: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6 , 2016 .

[149]  Johannes Orphal,et al.  Lifetime and production rate of NO x in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October-November 2003 , 2013 .

[150]  Judith L. Lean,et al.  THE SUN'S VARIABLE RADIATION AND ITS RELEVANCE FOR EARTH1 , 1997 .

[151]  C. Randall,et al.  Polar Ozone and Aerosol Measurement (POAM) II stratospheric NO2, 1993–1996 , 1998 .

[152]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[153]  G. Bazilevskaya,et al.  Influence of cosmic rays on chemical composition of the atmosphere: data analysis and photochemical modelling , 2002 .

[154]  R. Mcpeters,et al.  Observations of ozone depletion associated with solar proton events , 1981 .

[155]  T. Clarmann,et al.  Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events , 2005 .

[156]  S. Rumbold,et al.  Stratospheric Temperature and Radiative Forcing Response to 11-Year Solar Cycle Changes in Irradiance and Ozone , 2009 .

[157]  B. Mayer,et al.  Evaluation of radiation scheme performance within chemistry climate models , 2011 .

[158]  Sergio Gil-Lopez,et al.  Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters , 2005 .

[159]  R. Caballero-Lopez,et al.  Limitations of the force field equation to describe cosmic ray modulation , 2004 .

[160]  J. Notholt,et al.  Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region , 2009 .

[161]  M. Dasi-Espuig,et al.  SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES , 2013, 1304.3151.

[162]  R. Viereck,et al.  The Mg II index: A proxy for solar EUV , 2001 .

[163]  D. Marsh,et al.  Atmospheric changes caused by galactic cosmic rays over the period 1960–2010 , 2015 .

[164]  Katja Matthes,et al.  Transfer of the solar signal from the stratosphere to the troposphere: Northern winter , 2004 .

[165]  R. Shanmugam Introduction to Time Series and Forecasting , 1997 .

[166]  Patrick Jöckel,et al.  Development cycle 2 of the Modular Earth Submodel System (MESSy2) , 2010 .

[167]  J. Burrows,et al.  The response of mesospheric NO to geomagnetic forcing in 2002–2012 as seen by SCIAMACHY , 2016 .

[168]  C. Randall,et al.  What is the solar influence on climate? Overview of activities during CAWSES-II , 2014, Progress in Earth and Planetary Science.

[169]  S. Solanki,et al.  Reconstruction of solar spectral irradiance since the Maunder minimum , 2010 .

[170]  W. Dean Pesnell,et al.  Solar Cycle Predictions (Invited Review) , 2012 .

[171]  Sergio Gil-Lopez,et al.  HNO3, N2O5, and ClONO2 enhancements after the October-November 2003 solar proton events , 2005 .

[172]  A. Maycock,et al.  The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of recently updated satellite observations , 2016 .

[173]  Eduardo Zorita,et al.  The PMIP4 contribution to CMIP6 - Part 3: the Last Millennium, Scientific Objective and Experimental Design for the PMIP4 past1000 simulations , 2016 .

[174]  Mc Ilwain,et al.  COORDINATES FOR MAPPING THE DISTRIBUTION OF MAGNETICALLY TRAPPED PARTICLES , 1961 .

[175]  K. Nicoll,et al.  Energetic Particle Influence on the Earth’s Atmosphere , 2015 .

[176]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[177]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[178]  Paul J. Crutzen,et al.  The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen , 1981 .

[179]  T. Diehl,et al.  Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model , 2007 .

[180]  Matthew T. DeLand,et al.  Neutral atmospheric influences of the solar proton events in October–November 2003 , 2005 .

[181]  Yvonne C. Unruh,et al.  THE SPECTRAL DEPENDENCE OF FACULAR CONTRAST AND SOLAR IRRADIANCE VARIATIONS , 1999 .

[182]  C. Randall,et al.  Parameterization of monoenergetic electron impact ionization , 2010 .

[183]  C. Brühl,et al.  Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NO x produced by low energy electrons , 2008 .

[184]  M. Toohey,et al.  A Global Inventory of Stratospheric NOy from ACE-FTS Measurements , 2011 .

[185]  T. Clarmann,et al.  About the increase of HNO3 in the stratopause region during the Halloween 2003 solar proton event , 2008 .

[186]  A. Krivolutsky,et al.  Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulation and analysis of observational data , 2008 .

[187]  Adam A. Scaife,et al.  A mechanism for lagged North Atlantic climate response to solar variability , 2013 .

[188]  Mike Lockwood,et al.  Are cold winters in Europe associated with low solar activity? , 2010 .

[189]  P. Verronen,et al.  Analysis and parameterisation of ionic reactions affecting middle atmospheric HO x and NO y during solar proton events , 2013 .

[190]  M. Kunze,et al.  A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51) , 2016 .

[191]  M. Dasi-Espuig,et al.  Limits to solar cycle predictability: Cross-equatorial flux plumes , 2013, 1308.2827.

[192]  E. Cliver,et al.  Geomagnetic activity and the solar wind during the Maunder Minimum , 1998 .

[193]  K. Kodera,et al.  Solar forcing synchronizes decadal North Atlantic climate variability , 2015, Nature Communications.

[194]  Manuel López-Puertas,et al.  Mesospheric N 2 O enhancements as observed by MIPAS on Envisat during the polar winters in 2002–2004 , 2008 .

[195]  R. Mcpeters A nitric oxide increase observed following the July 1982 solar proton event , 1986 .

[196]  Paul J. Crutzen,et al.  Photochemical coupling between the thermosphere and the lower atmosphere: 1. Odd nitrogen from 50 to 120 km , 1982 .

[197]  Odele Coddington,et al.  A Solar Irradiance Climate Data Record , 2016 .

[198]  M. Freeman,et al.  Towards Synthesis of Solar Wind and Geomagnetic Scaling Exponents: A Fractional Lévy Motion Model , 2005 .

[199]  Paul Charbonneau,et al.  Solar cycle modelling using spatiotemporal decomposition schemes , 2007, J. Comput. Phys..

[200]  S. Solanki,et al.  Reconstruction of solar irradiance variations in cycle 23 , 2003 .

[201]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[202]  Benjamin A. Laken,et al.  Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds , 2013, 1310.0266.

[203]  M. Laurenza,et al.  Solar particle effects on minor components of the Polar atmosphere , 2008 .

[204]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[205]  D. Marsh,et al.  The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM , 2013 .

[206]  D. Shindell,et al.  Solar signals in CMIP‐5 simulations: the ozone response , 2015 .

[207]  William D. Collins,et al.  A global signature of enhanced shortwave absorption by clouds , 1998 .

[208]  I. Whittaker,et al.  Characteristics of precipitating energetic electron fluxes relative to the plasmapause during geomagnetic storms , 2014 .

[209]  M. Kunze,et al.  Investigating the early Earth faint young Sun problem with a general circulation model , 2014 .

[210]  F. Joos,et al.  Evidence for distinct modes of solar activity , 2014, 1402.4720.

[211]  J. D. Haigh,et al.  The role of stratospheric ozone in modulating the solar radiative forcing of climate , 1994, Nature.

[212]  Rolando R. Garcia,et al.  Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing , 2007 .

[213]  M. Sinnhuber,et al.  Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere , 2012, Surveys in Geophysics.

[214]  Volker Grewe,et al.  Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51 , 2015 .

[215]  David Rind,et al.  How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006 , 2008 .

[216]  Richard B. Horne,et al.  Energetic electron precipitation from the outer radiation belt during geomagnetic storms , 2009 .

[217]  F. Steinhilber,et al.  Prediction of solar activity for the next 500 years , 2013 .

[218]  W. McClintock,et al.  Solar–Stellar Irradiance Comparison Experiment II (Solstice II): Instrument Concept and Design , 2005 .

[219]  Gary Alan Fine,et al.  Present, Past, and Future , 2001 .

[220]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during geomagnetic storms , 2003 .

[221]  Greg Kopp,et al.  SORCE Contributions to New Understanding of Global Change and Solar Variability , 2005 .

[222]  D. Marsh,et al.  Impact of January 2005 Solar Proton Events on Chlorine Species , 2012 .

[223]  R. Simoniello,et al.  On the Current Solar Magnetic Activity in the Light of Its Behaviour During the Holocene , 2015, 1509.06182.

[224]  Ball F eb 2 01 6 Ozone observations reveal lower solar cycle spectral vari - , 2016 .

[225]  P. Bernath,et al.  Middle atmospheric changes caused by the January and March 2012 solar proton events , 2013 .

[226]  Edward W. Cliver,et al.  Revisiting the Sunspot Number , 2014, 1407.3231.

[227]  M. Sinnhuber,et al.  Interannual variation of NOx from the lower thermosphere to the upper stratosphere in the years 1991–2005 , 2011 .

[228]  I. Usoskin,et al.  Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere , 2010 .

[229]  Donald V. Reames,et al.  Particle acceleration at the Sun and in the heliosphere , 2013 .

[230]  Franz-Josef Lübken,et al.  Climate and Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program , 2013 .

[231]  J. Haigh,et al.  Solar Irradiance Variability and Climate , 2013, 1306.2770.

[232]  C. Rodger,et al.  Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes , 2013 .

[233]  D. Hathaway Solar Cycle Predictions , 1999 .

[234]  S. Solomon,et al.  Solar extreme‐ultraviolet irradiance for general circulation models , 2005 .

[235]  Greg Kopp,et al.  The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions , 2015 .

[236]  S. Solanki,et al.  Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23 , 2005 .

[237]  S. Melo,et al.  Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation , 2010 .

[238]  D. Siskind,et al.  Atmospheric science across the stratopause , 2000 .

[239]  H. Porter,et al.  Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air , 1976 .

[240]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[241]  J. Tamminen,et al.  Destruction of the tertiary ozone maximum during a solar proton event , 2006 .

[242]  K. Tapping The 10.7 cm solar radio flux (F10.7) , 2013 .

[243]  M. Santee,et al.  Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events , 2011 .

[244]  B. Mayer,et al.  Towards a better representation of the solar cycle in general circulation models , 2007 .

[245]  Laura Thölix,et al.  Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009 after sudden stratospheric warming , 2011 .

[246]  Mike Lockwood,et al.  SOLAR INFLUENCES ON CLIMATE , 2009 .

[247]  J. Haigh,et al.  GRIPS Solar Experiments Intercomparison Project: Initial Results , 2002 .

[248]  M. Gurtner,et al.  Atmocosmics:. a Geant 4 Code for Computing the Interaction of Cosmic Rays with the Earth's Atmosphere , 2005 .

[249]  D. Haggerty,et al.  Proton, helium, and electron spectra during the large solar particle events of October-November 2003 , 2005 .

[250]  Sidney W. Wang,et al.  Mesospheric Hydroxyl Response to Electron Precipitation From the Radiation Belts , 2011 .

[251]  Manuel López-Puertas,et al.  The solar proton events in 2012 as observed by MIPAS , 2013 .

[252]  H. Oerter,et al.  9,400 years of cosmic radiation and solar activity from ice cores and tree rings , 2012, Proceedings of the National Academy of Sciences.

[253]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[254]  R. Neale,et al.  The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments , 2013 .

[255]  I. Whittaker,et al.  The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison , 2014 .

[256]  GChiodo,et al.  The impact of a future solar minimum on climate change projections in the Northern Hemisphere , 2016 .

[257]  D. J. Cooke,et al.  On cosmic-ray cut-off terminology , 1991 .

[258]  Jerald W. Harder,et al.  An influence of solar spectral variations on radiative forcing of climate , 2010, Nature.

[259]  G. Bazilevskaya,et al.  Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers , 2011 .

[260]  P. Charbonneau Dynamo Models of the Solar Cycle , 2005 .

[261]  C. Brühl,et al.  Solar Effects on Chemistry and Climate Including Ocean Interactions , 2013 .

[262]  R. Mcpeters,et al.  The Response of Ozone to Solar Proton Events During Solar Cycle 21' A Theoretical Interpretation , 1985 .

[263]  James Manners,et al.  Solar forcing of winter climate variability in the Northern Hemisphere , 2011 .

[264]  Daniel R. Marsh,et al.  Climate change from 1850 to 2005 simulated in CESM1(WACCM) , 2013 .

[265]  Kalevi Mursula,et al.  Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004 , 2005 .

[266]  R. Mcpeters,et al.  The response of ozone to solar proton events during solar cycle 21 - The observations , 1985 .

[267]  B. Anderson,et al.  The diffuse aurora: A significant source of ionization in the middle atmosphere , 1997 .

[268]  P. Charbonneau Dynamo Models of the Solar Cycle , 2005 .

[269]  P. Crutzen,et al.  Solar Proton Event: Influence on Stratospheric Ozone , 1977, Science.

[270]  M. Mills,et al.  Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons , 2008 .

[271]  G. Thomas,et al.  Mesospheric ozone depletion during the solar proton event of July 13, 1982, Part I Measurement , 1983 .

[272]  A. Zadorozhny,et al.  Middle atmosphere response to the solar proton events of October 1989 using the results of rocket measurements , 1994 .

[273]  T. Moffat‐Griffin,et al.  Origin of energetic electron precipitation >30 keV into the atmosphere , 2010 .

[274]  A. Waple,et al.  Solar Forcing of Regional Climate Change During the Maunder Minimum , 2001, Science.

[275]  J. Laskar,et al.  NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 , 2016, 1605.09788.

[276]  Heikki Nevanlinna,et al.  Results of the Helsinki magnetic observatory 1844-1912 , 2004 .

[277]  J. Russell,et al.  The Effect of Solar Proton Events on Ozone and Other Constituents , 2013 .

[278]  T. D. Wit,et al.  Earth’s climate response to a changing Sun , 2015 .