Association of metallothionein 1A gene polymorphism rs8052394 with type 2 diabetes mellitus in Bangladeshi population

[1]  R. Sheervalilou,et al.  Association of Polymorphisms within HOX Transcript Antisense RNA (HOTAIR) with Type 2 Diabetes Mellitus and Laboratory Characteristics: A Preliminary Case-Control Study , 2022, Disease markers.

[2]  V. Ramachandran,et al.  Analysis of OCT1, OCT2 and OCT3 gene polymorphisms among Type 2 diabetes mellitus subjects in Indian ethnicity, Malaysia , 2021, Saudi journal of biological sciences.

[3]  R. Saravani,et al.  Relationship between Functional miR-143/145 Cluster Variants and Susceptibility to Type 2 Diabetes Mellitus: A Preliminary Case-Control Study and Bioinformatics Analyses , 2021, Endocrine research.

[4]  A. Nakhaee,et al.  Significant association of LXRβ (NR1H2) polymorphisms (rs28514894, rs2303044) with type 2 diabetes mellitus and laboratory characteristics , 2021, Journal of Diabetes & Metabolic Disorders.

[5]  A. Nakhaee,et al.  SIRT1 functional polymorphisms (rs12778366, rs3758391) as genetic biomarkers of susceptibility to type 2 diabetes mellitus in Iranians: a case-control study and computational analysis , 2021, International Journal of Diabetes in Developing Countries.

[6]  R. Saravani,et al.  IGF2BP2 polymorphisms as genetic biomarkers for either schizophrenia or type 2 diabetes mellitus: A case-control study , 2020 .

[7]  R. Sheervalilou,et al.  SNPs in the 3′-untranslated region of SLC30A8 confer risk of type 2 diabetes mellitus in a south-east Iranian population: Evidences from case-control and bioinformatics studies , 2020, Journal of Diabetes & Metabolic Disorders.

[8]  S. Qusti,et al.  SLC22A1 And ATM Genes Polymorphisms Are Associated With The Risk Of Type 2 Diabetes Mellitus In Western Saudi Arabia: A Case-Control Study , 2019, The application of clinical genetics.

[9]  R. Saravani,et al.  HHEX gene polymorphisms and type 2 diabetes mellitus: A case‐control report from Iran , 2019, Journal of cellular biochemistry.

[10]  R. Saravani,et al.  Association study of SREBF-2 gene polymorphisms and the risk of type 2 diabetes in a sample of Iranian population. , 2018, Gene.

[11]  Qianxi Li,et al.  Geographical and Ethnic Distributions of the MTHFR C677T, A1298C and MTRR A66G Gene Polymorphisms in Chinese Populations: A Meta-Analysis , 2016, PloS one.

[12]  G. Roglić WHO Global report on diabetes: A summary , 2016 .

[13]  Yoshimasa Tanaka,et al.  Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention , 2014, International journal of medical sciences.

[14]  P. Mecocci,et al.  Influence of +1245 A/G MT1A polymorphism on advanced glycation end-products (AGEs) in elderly: effect of zinc supplementation , 2014, Genes & Nutrition.

[15]  A. Jyothy,et al.  Association of Estrogen Receptor-α Gene & Metallothionein-1 Gene Polymorphisms in Type 2 Diabetic Women of Andhra Pradesh , 2012, Indian Journal of Clinical Biochemistry.

[16]  M. Apostolova,et al.  Association of +1245 A/G MT1A and -209 A/G MT2A Polymorphysms with Coronary Artery Disease and Diabetes Mellitus in Bulgarian Cohort , 2012 .

[17]  P. Mecocci,et al.  Association of MT1A haplotype with cardiovascular disease and antioxidant enzyme defense in elderly Greek population: comparison with an Italian cohort. , 2010, The Journal of nutritional biochemistry.

[18]  Bingding Huang,et al.  MetaPocket: a meta approach to improve protein ligand binding site prediction. , 2009, Omics : a journal of integrative biology.

[19]  M. Cherian,et al.  Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. , 2008, American journal of physiology. Endocrinology and metabolism.

[20]  R. Testa,et al.  +647 A/C and +1245 MT1A polymorphisms in the susceptibility of diabetes mellitus and cardiovascular complications. , 2008, Molecular genetics and metabolism.

[21]  Ton de Jong,et al.  Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning , 2005, Comput. Hum. Behav..

[22]  Piero Fariselli,et al.  I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure , 2005, Nucleic Acids Res..

[23]  Sean D. Mooney,et al.  Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis , 2005, Briefings Bioinform..

[24]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[25]  Gert Vriend,et al.  Increasing the precision of comparative models with YASARA NOVA—a self‐parameterizing force field , 2002, Proteins.

[26]  R. DiSilvestro Zinc in relation to diabetes and oxidative disease. , 2000, The Journal of nutrition.

[27]  L. Brooks,et al.  A DNA polymorphism discovery resource for research on human genetic variation. , 1998, Genome research.

[28]  M. Karplus,et al.  Evaluation of comparative protein modeling by MODELLER , 1995, Proteins.

[29]  A. Schäffer,et al.  Biochemistry of metallothionein. , 1988, Biochemistry.

[30]  J. Rowley,et al.  Metallothionein gene cluster is split by chromosome 16 rearrangements in myelomonocytic leukaemia , 1985, Nature.

[31]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[32]  S. Khatiwada Polymorphism in Metallothionein 1A Gene in Nepalese Patients with Type 2 Diabetes Mellitus , 2016 .

[33]  Petr Babula,et al.  Metallothionein polymorphisms in pathological processes. , 2014, Metallomics : integrated biometal science.

[34]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..