Adding Local Search to Particle Swarm Optimization

Particle swarm optimization is a stochastic algorithm for optimizing continuous functions. It uses a population of particles that follow trajectories through the search space towards good optima. This paper proposes adding a local search component to PSO to improve its convergence speed. Two possible methods are discussed. The first adds a term containing estimated gradient information to the velocity of each particle. The second explicitly incorporates the Nelder-Mead algorithm, a known local search technique, within PSO. The suggested methods have been applied to the problem of estimating parameters of a gene network model. Results indicate the effectiveness of the proposed strategies.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Stephen M. Welch,et al.  A Genetic Neural Network Model of Flowering Time Control in Arabidopsis thaliana , 2003 .

[4]  Sanjoy Das,et al.  A co-evolutionary hybrid algorithm for multi-objective optimization of gene regulatory network models , 2005, GECCO '05.

[5]  Stephen M. Welch,et al.  Modelling gene networks controlling transition to flowering in Arabidopsis , 2004 .

[6]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[7]  H. van Keulen,et al.  The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. , 1996 .

[8]  Sanjoy Das,et al.  Fuzzy Dominance Based Multi-objective GA-Simplex Hybrid Algorithms Applied to Gene Network Models , 2004, GECCO.

[9]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[10]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[11]  Brian Birge,et al.  PSOt - a particle swarm optimization toolbox for use with Matlab , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[12]  Sanjoy Das,et al.  A multi-objective GA-simplex hybrid approach for gene regulatory network models , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[13]  Zhanshan Dong,et al.  INCORPORATION OF GENOMIC INFORMATION INTO THE SIMULATION OF FLOWERING TIME IN ARABIDOPSIS THALIANA by , 2003 .

[14]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Sanjoy Das,et al.  Merging genomic control networks and soil-plant-atmosphere-continuum models , 2005 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[18]  Mohamed B. Trabia A Hybrid Fuzzy Simplex Genetic Algorithm , 2004 .