Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

[1]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[2]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[3]  Andrew S. Paluch,et al.  Developing a Predictive Form of MOSCED for Nonelectrolyte Solids Using Molecular Simulation: Application to Acetanilide, Acetaminophen, and Phenacetin , 2016 .

[4]  E. Maginn,et al.  Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride. , 2007, The Journal of chemical physics.

[5]  J. M. Haile,et al.  Thermodynamics: THE BASICS , 2005 .

[6]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[7]  C. Cramer,et al.  Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. , 2007, Journal of chemical theory and computation.

[8]  R. F. Blanks,et al.  Thermodynamics of Polymer Solubility in Polar and Nonpolar Systems , 1964 .

[9]  Andrew S. Paluch,et al.  A method for computing the solubility limit of solids: application to sodium chloride in water and alcohols. , 2010, The Journal of chemical physics.

[10]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[11]  D. Ambrose,et al.  Handbook of the thermodynamics of organic compounds , 1987 .

[12]  C. Vega,et al.  Solubility of KF and NaCl in water by molecular simulation. , 2007, The Journal of chemical physics.

[13]  Sebastian Diaz-Rodriguez,et al.  Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model , 2016, Journal of Computer-Aided Molecular Design.

[14]  Timothy C. Frank,et al.  Application of MOSCED and UNIFAC to Screen Hydrophobic Solvents for Extraction of Hydrogen-Bonding Organics from Aqueous Solution , 2007 .

[15]  Å. Rasmuson,et al.  Thermodynamics of molecular solids in organic solvents , 2012 .

[16]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[17]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[18]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[19]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[20]  Jeanette G. Grasselli,et al.  CRC Handbook of Data on Organic Compounds , 1985 .

[21]  C. Vega,et al.  Solubility of NaCl in water by molecular simulation revisited. , 2012, The Journal of chemical physics.

[22]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. , 2005, The journal of physical chemistry. B.

[23]  K. Kobe The properties of gases and liquids , 1959 .

[24]  Andrzej Parczewski,et al.  Organic solvents in the pharmaceutical industry. , 2010, Acta poloniae pharmaceutica.

[25]  Wei Yang,et al.  The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field. , 2012, Journal of chemical theory and computation.

[26]  T. Brinck,et al.  Prediction of solubility of solid organic compounds in solvents by UNIFAC , 2002 .

[27]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[28]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds. , 2013, The journal of physical chemistry. B.

[29]  David L. Mobley,et al.  Guidelines for the analysis of free energy calculations , 2015, Journal of Computer-Aided Molecular Design.

[30]  Å. Rasmuson,et al.  Determination of the activity of a molecular solute in saturated solution , 2008 .

[31]  D. Dollimore,et al.  Calculation of vapor pressure curves for hydroxy benzoic acid derivatives using thermogravimetry , 2002 .

[32]  William Q. Meeker,et al.  Statistical Intervals: A Guide for Practitioners and Researchers , 2017 .

[33]  Jürgen Gmehling,et al.  Present status and potential of group contribution methods for process development , 2009 .

[34]  Charles A. Eckert,et al.  Revision of MOSCED Parameters and Extension to Solid Solubility Calculations , 2005 .

[35]  Athanassios Z Panagiotopoulos,et al.  Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. , 2015, The Journal of chemical physics.

[36]  Katherine S. Shing,et al.  Computer simulation methods for the calculation of solubility in supercritical extraction systems , 1987 .

[37]  M. Lísal,et al.  Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid. , 2012, The journal of physical chemistry. B.

[38]  Peter A. Crafts,et al.  Correlation and Prediction of Drug Molecule Solubility in Mixed Solvent Systems with the Nonrandom Two-Liquid Segment Activity Coefficient (NRTL−SAC) Model , 2006 .

[39]  J. Ilja Siepmann,et al.  TRANSFERABLE POTENTIALS FOR PHASE EQUILIBRIA. 3. EXPLICIT-HYDROGEN DESCRIPTION OF NORMAL ALKANES , 1999 .

[40]  Alán Aspuru-Guzik,et al.  Advances in molecular quantum chemistry contained in the Q-Chem 4 program package , 2014, Molecular Physics.

[41]  John W. Eaton,et al.  GNU Octave manual version 3: a high-level interactive language for numerical computations , 2008 .

[42]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[43]  Peter T. Cummings,et al.  Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation , 1998 .

[44]  Å. Rasmuson,et al.  Prediction of solubility curves and melting properties of organic and pharmaceutical compounds. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[45]  J. Prausnitz,et al.  Regular and related solutions : the solubility of gases, liquids, and solids , 1970 .

[46]  C. Hansen,et al.  The Universality of the Solubility Parameter , 1969 .

[47]  Jens Abildskov,et al.  Solubility and Related Properties of Large Complex Chemicals – Part 2 , 2005 .

[48]  David J. C. Constable,et al.  Perspective on Solvent Use in the Pharmaceutical Industry , 2007 .

[49]  R. Liu Water-insoluble drug formulation , 2000 .

[50]  David L Mobley,et al.  Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. , 2007, The Journal of chemical physics.

[51]  Gregory D. Hawkins,et al.  Prediction of Vapor Pressures from Self-Solvation Free Energies Calculated by the SM5 Series of Universal Solvation Models , 2000 .

[52]  Christophe Chipot,et al.  Comprar Free Energy Calculations · Theory and Applications in Chemistry and Biology | Chipot, Christophe | 9783540736172 | Springer , 2007 .

[53]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[54]  L. Fried,et al.  Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria. , 2008, The Journal of chemical physics.

[55]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[56]  Laura C. Draucker,et al.  Experimental Determination and Model Prediction of Solid Solubility of Multifunctional Compounds in Pure and Mixed Nonelectrolyte Solvents , 2007 .

[57]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[58]  Bin Chen,et al.  Microscopic structure and solvation in dry and wet octanol. , 2006, The journal of physical chemistry. B.

[59]  J. M. Haile,et al.  Thermodynamics: THE BASICS , 2005 .

[60]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[61]  Andrew S. Paluch,et al.  Predicting the Solubility of Solid Phenanthrene: A Combined Molecular Simulation and Group Contribution Approach , 2013 .

[62]  William R. Smith,et al.  Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl. , 2011, The journal of physical chemistry. B.

[63]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[64]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. , 2007, The journal of physical chemistry. B.

[65]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[66]  David M. Eike,et al.  Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene. , 2006, The Journal of chemical physics.

[67]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[68]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[69]  J. M. Haile,et al.  Thermodynamics : fundamentals for applications , 2005 .

[70]  G. Ciccotti,et al.  Solubility of KF in water by molecular dynamics using the Kirkwood integration method , 2002 .

[71]  Gürkan Sin,et al.  Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis , 2012 .

[72]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[73]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[74]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[75]  Peter T. Cummings,et al.  Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation , 1997 .

[76]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[77]  J. Ilja Siepmann,et al.  Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols , 2001 .

[78]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[79]  J. I. Siepmann,et al.  Investigation of the driving forces for retention in reversed-phase liquid chromatography: Monte Carlo simulations of solute partitioning between n-hexadecane and various aqueous-organic mixtures , 2010 .

[80]  Ken A Dill,et al.  Use of the Weighted Histogram Analysis Method for the Analysis of Simulated and Parallel Tempering Simulations. , 2007, Journal of chemical theory and computation.

[81]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes , 2000 .

[82]  Andrew S. Paluch,et al.  Calculating the Fugacity of Pure, Low Volatile Liquids via Molecular Simulation with Application to Acetanilide, Acetaminophen, and Phenacetin , 2015 .

[83]  Stanley M. Walas,et al.  Phase equilibria in chemical engineering , 1985 .

[84]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[85]  Rafiqul Gani,et al.  Thermodynamic Property Modeling for Chemical Process and Product Engineering: Some Perspectives , 2009 .

[86]  Peter A. Kollman,et al.  Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins , 1995, J. Comput. Chem..

[87]  David A. Kofke,et al.  Appropriate methods to combine forward and reverse free-energy perturbation averages , 2003 .

[88]  Jeremy R. Phifer,et al.  Computing MOSCED parameters of nonelectrolyte solids with electronic structure methods in SMD and SM8 continuum solvents , 2017 .

[89]  Measurement and Prediction of Solubility of Paracetamol in Water−Isopropanol Solution. Part 2. Prediction , 2006 .

[90]  Charles A. Eckert,et al.  Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC , 1984 .

[91]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[92]  Donald G Truhlar,et al.  Generalized Born Solvation Model SM12. , 2013, Journal of chemical theory and computation.