C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles

[1]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[2]  S. McKnight,et al.  Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers , 2016, Cell.

[3]  Diana M. Mitrea,et al.  Coexisting Liquid Phases Underlie Nucleolar Subcompartments , 2016, Cell.

[4]  J. Taylor,et al.  Higher‐order oligomerization promotes localization of SPOP to liquid nuclear speckles , 2016, The EMBO journal.

[5]  J. Lieberman,et al.  G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits , 2016, The Journal of cell biology.

[6]  L. Petrucelli,et al.  C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins , 2016, Nature Neuroscience.

[7]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[8]  F. Urano,et al.  Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. , 2016, Human molecular genetics.

[9]  Christopher B. Stanley,et al.  Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA , 2016, eLife.

[10]  R. Kalb,et al.  GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function , 2015, eLife.

[11]  Claire H. Michel,et al.  ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function , 2015, Neuron.

[12]  Peter Tompa,et al.  Polymer physics of intracellular phase transitions , 2015, Nature Physics.

[13]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[14]  A. Kanagaraj,et al.  Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization , 2015, Cell.

[15]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[16]  Bruce L. Miller,et al.  GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport , 2015, Nature.

[17]  Sean J. Miller,et al.  The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.

[18]  F. Gage,et al.  Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS , 2015, Nature Neuroscience.

[19]  I. Poser,et al.  Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules , 2015, eLife.

[20]  Christian A. Ross,et al.  Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.

[21]  K. Neugebauer,et al.  Coilin: The first 25 years , 2015, RNA biology.

[22]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[23]  N. Shneider,et al.  Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.

[24]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[25]  S. McKnight,et al.  Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.

[26]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[27]  Kevin F. Bieniek,et al.  Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.

[28]  L. Kunkel,et al.  A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). , 2014, Human molecular genetics.

[29]  A Keith Dunker,et al.  Intrinsically disordered proteins and intrinsically disordered protein regions. , 2014, Annual review of biochemistry.

[30]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[31]  K. Eggan,et al.  Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations , 2014, Neuron.

[32]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[33]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[34]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[35]  Sahand Hormoz,et al.  Amino acid composition of proteins reduces deleterious impact of mutations , 2013, Scientific Reports.

[36]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[37]  Chadwick M. Hales,et al.  Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration , 2013, Proceedings of the National Academy of Sciences.

[38]  Adam Ameur,et al.  Welander Distal Myopathy Caused by an Ancient Founder Mutation in TIA1 Associated with Perturbed Splicing , 2013, Human mutation.

[39]  Bjarne Udd,et al.  Welander distal myopathy is caused by a mutation in the RNA‐binding protein TIA1 , 2013, Annals of neurology.

[40]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[41]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[42]  Paul S. Russo,et al.  Phase Transitions in the Assembly of MultiValent Signaling Proteins , 2016 .

[43]  M. Affolter,et al.  Fluorescent fusion protein knockout mediated by anti-GFP nanobody , 2011, Nature Structural &Molecular Biology.

[44]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[45]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[46]  A. Hyman,et al.  Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes , 2011, Proceedings of the National Academy of Sciences.

[47]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[48]  Hyungwon Choi,et al.  SAINT: Probabilistic Scoring of Affinity Purification - Mass Spectrometry Data , 2010, Nature Methods.

[49]  Rebecca B. Smith,et al.  Native Functions of the Androgen Receptor Are Essential to Pathogenesis in a Drosophila Model of Spinobulbar Muscular Atrophy , 2010, Neuron.

[50]  P. Anderson,et al.  RNA granules: post-transcriptional and epigenetic modulators of gene expression , 2009, Nature Reviews Molecular Cell Biology.

[51]  Philippe Pierre,et al.  SUnSET, a nonradioactive method to monitor protein synthesis , 2009, Nature Methods.

[52]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[53]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[54]  F. Boisvert,et al.  The multifunctional nucleolus , 2007, Nature Reviews Molecular Cell Biology.

[55]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[56]  P. Bouvet,et al.  Structure and functions of nucleolin. , 1999, Journal of cell science.

[57]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[58]  B. van Steensel,et al.  Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus , 1993, The Journal of cell biology.

[59]  A. Verma Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis , 2010 .

[60]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[61]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.