An analysis of control parameters of MOEA/D under two different optimization scenarios

Abstract An unbounded external archive (UEA), which stores all nondominated solutions found during the search process, is frequently used to evaluate the performance of multi-objective evolutionary algorithms (MOEAs) in recent studies. A recent benchmarking study also shows that decomposition-based MOEA (MOEA/D) is competitive with state-of-the-art MOEAs when the UEA is incorporated into MOEA/D. However, a parameter study of MOEA/D using the UEA has not yet been performed. Thus, it is unclear how control parameter settings influence the performance of MOEA/D with the UEA. In this paper, we present an analysis of control parameters of MOEA/D under two performance evaluation scenarios. One is a final population scenario where the performance assessment of MOEAs is performed based on all nondominated solutions in the final population, and the other is a reduced UEA scenario where it is based on a pre-specified number of selected nondominated solutions from the UEA. Control parameters of MOEA/D investigated in this paper include the population size, scalarizing functions, and the penalty parameter of the penalty-based boundary intersection (PBI) function. Experimental results indicate that suitable settings of the three control parameters significantly depend on the choice of an optimization scenario. We also analyze the reason why the best parameter setting is totally different for each scenario.

[1]  Dipti Srinivasan,et al.  Enhanced Multiobjective Evolutionary Algorithm Based on Decomposition for Solving the Unit Commitment Problem , 2015, IEEE Transactions on Industrial Informatics.

[2]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[3]  Hisao Ishibuchi,et al.  Simultaneous use of different scalarizing functions in MOEA/D , 2010, GECCO '10.

[4]  Hisao Ishibuchi,et al.  Comparing solution sets of different size in evolutionary many-objective optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[5]  Qingfu Zhang,et al.  Stable Matching-Based Selection in Evolutionary Multiobjective Optimization , 2014, IEEE Transactions on Evolutionary Computation.

[6]  Xin Yao,et al.  Many-Objective Evolutionary Algorithms , 2015, ACM Comput. Surv..

[7]  Hisao Ishibuchi,et al.  Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes , 2017, IEEE Transactions on Evolutionary Computation.

[8]  Enrique Alba,et al.  A Study of Convergence Speed in Multi-objective Metaheuristics , 2008, PPSN.

[9]  Carlos A. Coello Coello,et al.  Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization , 2015, GECCO.

[10]  Tao Zhang,et al.  On the effect of reference point in MOEA/D for multi-objective optimization , 2017, Appl. Soft Comput..

[11]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[12]  Carlos A. Coello Coello,et al.  A hyper-heuristic of scalarizing functions , 2017, GECCO.

[13]  Hisao Ishibuchi,et al.  Reference point specification in hypervolume calculation for fair comparison and efficient search , 2017, GECCO.

[14]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[15]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[16]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Anna Syberfeldt,et al.  Parameter Tuning of MOEAs Using a Bilevel Optimization Approach , 2015, EMO.

[18]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[19]  Hisao Ishibuchi,et al.  Behavior of Multiobjective Evolutionary Algorithms on Many-Objective Knapsack Problems , 2015, IEEE Transactions on Evolutionary Computation.

[20]  Tao Zhang,et al.  Localized Weighted Sum Method for Many-Objective Optimization , 2018, IEEE Transactions on Evolutionary Computation.

[21]  Bo Zhang,et al.  Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers , 2016, IEEE Transactions on Evolutionary Computation.

[22]  Thomas Stützle,et al.  Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms , 2013, EMO.

[23]  Dipti Srinivasan,et al.  A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition , 2017, IEEE Transactions on Evolutionary Computation.

[24]  Shengxiang Yang,et al.  An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts , 2016, IEEE Transactions on Cybernetics.

[25]  Nicola Beume,et al.  Parameter Tuning Boosts Performance of Variation Operators in Multiobjective Optimization , 2010, PPSN.

[26]  Shengxiang Yang,et al.  Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[27]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[28]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[29]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[30]  Tobias Friedrich,et al.  Generic Postprocessing via Subset Selection for Hypervolume and Epsilon-Indicator , 2014, PPSN.

[31]  Marco Laumanns,et al.  On Sequential Online Archiving of Objective Vectors , 2011, EMO.

[32]  Fang Liu,et al.  MOEA/D with Adaptive Weight Adjustment , 2014, Evolutionary Computation.

[33]  Xiaodong Li,et al.  Sensitivity analysis of Penalty-based Boundary Intersection on aggregation-based EMO algorithms , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[34]  Anne Auger,et al.  COCO: The Bi-objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite , 2016, ArXiv.

[35]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[36]  Hisao Ishibuchi,et al.  Benchmarking Multi- and Many-Objective Evolutionary Algorithms Under Two Optimization Scenarios , 2017, IEEE Access.

[37]  Shengxiang Yang,et al.  Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes , 2017, Soft Comput..

[38]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[39]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[40]  Hisao Ishibuchi,et al.  Pareto Fronts of Many-Objective Degenerate Test Problems , 2016, IEEE Transactions on Evolutionary Computation.

[41]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[42]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[43]  Bilel Derbel,et al.  Experiments on Greedy and Local Search Heuristics for ddimensional Hypervolume Subset Selection , 2016, GECCO.

[44]  Tapabrata Ray,et al.  An Enhanced Decomposition-Based Evolutionary Algorithm With Adaptive Reference Vectors , 2018, IEEE Transactions on Cybernetics.

[45]  Qingfu Zhang,et al.  On the use of random weights in MOEA/D , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[46]  Thomas Stützle,et al.  A Large-Scale Experimental Evaluation of High-Performing Multi- and Many-Objective Evolutionary Algorithms , 2018, Evolutionary Computation.

[47]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[48]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[49]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[50]  Dimo Brockhoff,et al.  Benchmarking Numerical Multiobjective Optimizers Revisited , 2015, GECCO.

[51]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[52]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[53]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[54]  Tapabrata Ray,et al.  Optimum Oil Production Planning Using Infeasibility Driven Evolutionary Algorithm , 2013, Evolutionary Computation.

[55]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[56]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[57]  Hisao Ishibuchi,et al.  Selecting a small number of representative non-dominated solutions by a hypervolume-based solution selection approach , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[58]  Hiroyuki Sato,et al.  Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs , 2015, J. Heuristics.

[59]  Carlos A. Coello Coello,et al.  An Overview of Weighted and Unconstrained Scalarizing Functions , 2017, EMO.

[60]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[61]  Hisao Ishibuchi,et al.  Characteristics of many-objective test problems and penalty parameter specification in MOEA/D , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[62]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[63]  Hisao Ishibuchi,et al.  How to compare many-objective algorithms under different settings of population and archive sizes , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[64]  Xin Yao,et al.  A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[65]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[66]  Qingfu Zhang,et al.  Adaptively Allocating Search Effort in Challenging Many-Objective Optimization Problems , 2018, IEEE Transactions on Evolutionary Computation.

[67]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[68]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[69]  Qingfu Zhang,et al.  Decomposition of a Multiobjective Optimization Problem Into a Number of Simple Multiobjective Subproblems , 2014, IEEE Transactions on Evolutionary Computation.

[70]  Carlos M. Fonseca,et al.  Greedy Hypervolume Subset Selection in Low Dimensions , 2016, Evolutionary Computation.

[71]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[72]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[73]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..