Serotonin and Hallucinogens

[1]  G. Aghajanian,et al.  5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by μ-opiate receptor activation , 1998, Neuroscience.

[2]  P S Goldman-Rakic,et al.  5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Palacios,et al.  Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907 , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[4]  A. Deutch,et al.  Serotonin 5‐HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex , 1997, Synapse.

[5]  F. Vollenweider,et al.  Positron Emission Tomography and Fluorodeoxyglucose Studies of Metabolic Hyperfrontality and Psychopathology in the Psilocybin Model of Psychosis , 1997, Neuropsychopharmacology.

[6]  G. Aghajanian,et al.  Serotonin Induces Excitatory Postsynaptic Potentials in Apical Dendrites of Neocortical Pyramidal Cells , 1997, Neuropharmacology.

[7]  A. Brown,et al.  SB 242084, a Selective and Brain Penetrant 5-HT2C Receptor Antagonist , 1997, Neuropharmacology.

[8]  G. Aghajanian,et al.  LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. , 1996, The Journal of pharmacology and experimental therapeutics.

[9]  D. Murphy,et al.  Chronic Administration of Serotonergic Antidepressants Attenuates the Subjective Effects of LSD in Humans , 1996, Neuropsychopharmacology.

[10]  T. Südhof,et al.  Distinct Ca2+ and Sr2+ Binding Properties of Synaptotagmins , 1995, The Journal of Biological Chemistry.

[11]  F. Bloom,et al.  Psychopharmacology: The Fourth Generation of Progress , 1995 .

[12]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P P Humphrey,et al.  International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). , 1994, Pharmacological reviews.

[14]  G. Aston-Jones,et al.  A 5-hydroxytryptamine2 agonist augments γ-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons , 1993, Neuroscience.

[15]  R. North,et al.  Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. , 1993, Journal of neurophysiology.

[16]  G. Aghajanian,et al.  Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons , 1993, Brain Research.

[17]  R. Andrade,et al.  5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex , 1991, Neuroscience.

[18]  R. Glennon Do classical hallucinogens act as 5-HT2 agonists or antagonists? , 1990, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.

[19]  M. Pompeiano,et al.  Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites , 1990, Brain Research.

[20]  G. Aghajanian,et al.  Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2 -activated interneuron , 1990, Brain Research.

[21]  E. sanders-Bush,et al.  Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. , 1988, The Journal of pharmacology and experimental therapeutics.

[22]  G. Aghajanian,et al.  Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity. , 1988, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.

[23]  G. Aghajanian,et al.  Effect of hallucinogens on spontaneous and sensory-evoked locus coeruleus unit activity in the rat: reversal by selective 5-HT2antagonists , 1986, Brain Research.

[24]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[25]  R. Glennon,et al.  Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. , 1984, Life sciences.

[26]  F. Bloom,et al.  Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  G. Aghajanian Mescaline and LSD facilitate the activation of locus coeruleus neurons by peripheral stimuli , 1980, Brain Research.

[28]  G. Aghajanian,et al.  Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. , 1978, Life sciences.

[29]  F. Bloom,et al.  Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. , 1972, Life sciences. Pt. 1: Physiology and pharmacology.

[30]  W. Foote,et al.  Action of psychotogenic drugs on single midbrain raphe neurons. , 1970, The Journal of pharmacology and experimental therapeutics.

[31]  W. Foote,et al.  Lysergic Acid Diethylamide: Sensitive Neuronal Units in the Midbrain Raphe , 1968, Science.

[32]  M. Raskin,et al.  Accentuation of the psychological effects of LSD-25 in normal subjects treated with reserpine. , 1965, Life sciences.

[33]  M. Raskin,et al.  LSD-25 ACTION IN NORMAL SUBJECTS TREATED WITH A MONOAMINE OXIDASE INHIBITOR. , 1964, Life sciences.

[34]  D. X. Freedman Effects of LSD-25 on brain serotonin. , 1961, The Journal of pharmacology and experimental therapeutics.

[35]  A. Balestrieri,et al.  Acquired and crossed tolerance to mescaline, LSD-25, and BOL-148. , 1959, A.M.A. archives of general psychiatry.

[36]  H. Isbell,et al.  Studies on the diethylamide of lysergic acid (LSD-25). II. Effects of chlorpromazine, azacyclonol, and reserpine on the intensity of the LSD-reaction. , 1957, A.M.A. archives of neurology and psychiatry.

[37]  D. Woolley,et al.  Some serotoninlike activities of lysergic acid diethylamide. , 1956, Science.

[38]  D. Woolley,et al.  A BIOCHEMICAL AND PHARMACOLOGICAL SUGGESTION ABOUT CERTAIN MENTAL DISORDERS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[39]  I. Page,et al.  Serotonin content of some mammalian tissues and urine and a method for its determination. , 1953, The American journal of physiology.

[40]  M. Rapport,et al.  Serum vasoconstrictor, serotonin; isolation and characterization. , 1948, The Journal of biological chemistry.

[41]  G. Aghajanian,et al.  Hallucinogenic indoleamines: Preferential action upon presynaptic serotonin receptors. , 1975, Psychopharmacology communications.

[42]  Aghajanian Gk,et al.  Hallucinogenic indoleamines: Preferential action upon presynaptic serotonin receptors. , 1975 .

[43]  G. Aghajanian,et al.  Mescaline and LSD: direct and indirect effects on serotonin-containing neurons in brain. , 1973, European journal of pharmacology.

[44]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.