Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape.

[1]  A. Bernkop‐Schnürch,et al.  Thiolated cyclodextrins: A comparative study of their mucoadhesive properties. , 2023, International journal of pharmaceutics.

[2]  Guihua Fang,et al.  Cyclodextrin-based ocular drug delivery systems: A comprehensive review , 2023, Coordination Chemistry Reviews.

[3]  R. Ambrus,et al.  Nano-Spray-Dried Levocetirizine Dihydrochloride with Mucoadhesive Carriers and Cyclodextrins for Nasal Administration , 2023, Pharmaceutics.

[4]  N. Çelebi,et al.  Cyclodextrin-based nanogel of flurbiprofen for dermal application: In vitro studies and in vivo skin irritation evaluation , 2023, Journal of Drug Delivery Science and Technology.

[5]  A. Bernkop‐Schnürch,et al.  Per-thiolated cyclodextrins: Nanosized drug carriers providing a prolonged gastrointestinal residence time. , 2022, Carbohydrate polymers.

[6]  F. Topuz Rapid Sublingual Delivery of Piroxicam from Electrospun Cyclodextrin Inclusion Complex Nanofibers , 2022, ACS omega.

[7]  A. Piras,et al.  Thiolated 2-Methyl-β-Cyclodextrin as a Mucoadhesive Excipient for Poorly Soluble Drugs: Synthesis and Characterization , 2022, Polymers.

[8]  S. Thayumanavan,et al.  Thiol-Disulfide Exchange as a Route for Endosomal Escape of Polymeric Nanoparticles. , 2022, Angewandte Chemie.

[9]  A. Bernkop‐Schnürch,et al.  Design of nanostructured lipid carriers and solid lipid nanoparticles for enhanced cellular uptake. , 2022, International journal of pharmaceutics.

[10]  L. Szente,et al.  Cellular Effects of Cyclodextrins: Studies on HeLa Cells , 2022, Molecules.

[11]  A. Piras,et al.  Thiolated Hydroxypropyl-β-cyclodextrin: A Potential Multifunctional Excipient for Ocular Drug Delivery , 2022, International journal of molecular sciences.

[12]  Shao-ming Chi,et al.  Oral administration of pH-responsive polyamine modified cyclodextrin nanoparticles for controlled release of anti-tumor drugs , 2022, Reactive and Functional Polymers.

[13]  A. Emwas,et al.  Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications , 2021, Polysaccharides.

[14]  S. Matile,et al.  Thiol-Mediated Uptake , 2021, JACS Au.

[15]  A. Bernkop‐Schnürch,et al.  Thiolated cyclodextrins: Mucoadhesive and permeation enhancing excipients for ocular drug delivery. , 2021, International journal of pharmaceutics.

[16]  A. Bernkop‐Schnürch,et al.  Thiolated cyclodextrins: New perspectives for old excipients , 2020, Coordination Chemistry Reviews.

[17]  W. N. Ibrahim,et al.  Formulation, Cellular Uptake and Cytotoxicity of Thymoquinone-Loaded PLGA Nanoparticles in Malignant Melanoma Cancer Cells , 2020, International journal of nanomedicine.

[18]  S. Matile,et al.  Inhibitors of thiol-mediated uptake , 2020, Chemical science.

[19]  A. Bernkop‐Schnürch,et al.  Cellular uptake of self-emulsifying drug-delivery systems: polyethylene glycol versus polyglycerol surface. , 2020, Nanomedicine.

[20]  Haifeng Liu,et al.  A resazurin-based, nondestructive assay for monitoring cell proliferation during a scaffold-based 3D culture process , 2020, Regenerative biomaterials.

[21]  A. Bernkop‐Schnürch,et al.  Per-6-Thiolated Cyclodextrins: A Novel Type of Permeation Enhancing Excipients for BCS Class IV Drugs , 2020, ACS applied materials & interfaces.

[22]  D. D. de Araújo,et al.  Evaluation of Budesonide–Hydroxypropyl-β-Cyclodextrin Inclusion Complex in Thermoreversible Gels for Ulcerative Colitis , 2020, Digestive Diseases and Sciences.

[23]  A. Bernkop‐Schnürch,et al.  Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. , 2020, International journal of pharmaceutics.

[24]  J. Putaux,et al.  Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic γ-cyclodextrin nanoparticles. , 2020, Materials science & engineering. C, Materials for biological applications.

[25]  I. Khan,et al.  Effect of Cyclodextrin Derivatization on Solubility and Efficacy of Drugs , 2019, Colloid Science in Pharmaceutical Nanotechnology.

[26]  A. Bernkop‐Schnürch,et al.  Thiolated hydroxypropyl-β-cyclodextrin as mucoadhesive excipient for oral delivery of budesonide in liquid paediatric formulation. , 2019, International journal of pharmaceutics.

[27]  Robin Taylor,et al.  A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. , 2019, Chemical reviews.

[28]  Xiaofei Qin,et al.  Improving cellular uptake of therapeutic entities through interaction with components of cell membrane , 2019, Drug delivery.

[29]  D. Pei,et al.  Overcoming Endosomal Entrapment in Drug Delivery. , 2018, Bioconjugate chemistry.

[30]  A. Bernkop‐Schnürch,et al.  S-protected thiolated cyclodextrins as mucoadhesive oligomers for drug delivery. , 2018, Journal of colloid and interface science.

[31]  S. Jacob,et al.  Cyclodextrin complexes: Perspective from drug delivery and formulation , 2018, Drug development research.

[32]  V. Londhe,et al.  Formulation and Characterization of Fast-Dissolving Sublingual Film of Iloperidone Using Box–Behnken Design for Enhancement of Oral Bioavailability , 2018, AAPS PharmSciTech.

[33]  C. A. Azlan,et al.  Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis , 2017, Journal of Nanoparticle Research.

[34]  Jian-Dong Jiang,et al.  Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluorouracil hydroxypropyl-β-cyclodextrin complex. , 2016, Carbohydrate polymers.

[35]  G. Balogh,et al.  Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery. , 2015, International journal of pharmaceutics.

[36]  F. Fabbiani,et al.  Structural Elucidation of α-Cyclodextrin-Succinic Acid Pseudo Dodecahydrate: Expanding the Packing Types of α-Cyclodextrin Inclusion Complexes , 2015 .

[37]  C. Huck,et al.  Synthesis and characterization of thiolated β-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. , 2015, Carbohydrate polymers.

[38]  S. Takeoka,et al.  Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport , 2014, International journal of nanomedicine.

[39]  L. Szente,et al.  Fluorescently Labeled Methyl-Beta-Cyclodextrin Enters Intestinal Epithelial Caco-2 Cells by Fluid-Phase Endocytosis , 2014, PloS one.

[40]  Christopher E. Nelson,et al.  Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. , 2013, Journal of visualized experiments : JoVE.

[41]  S. Mornet,et al.  Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry , 2013, Particle and Fibre Toxicology.

[42]  A. Herrmann,et al.  Uptake of a fluorescent methyl-β-cyclodextrin via clathrin-dependent endocytosis. , 2012, Chemistry and physics of lipids.

[43]  A. Torres,et al.  Exploiting cell surface thiols to enhance cellular uptake. , 2012, Trends in biotechnology.

[44]  J. Pastor,et al.  Trypan Blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis. , 2011, Experimental eye research.

[45]  D. Hileeto,et al.  Trypan blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis , 2011 .

[46]  M. Masserini,et al.  Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. , 2011, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[47]  A. Bernkop‐Schnürch,et al.  Role of sulfhydryl groups in transfection? A case study with chitosan-NAC nanoparticles. , 2007, Bioconjugate chemistry.

[48]  M. Másson,et al.  Cyclodextrins in drug delivery , 2005, Expert opinion on drug delivery.

[49]  Wolfram Saenger,et al.  Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex , 1974 .

[50]  K. Dawson,et al.  Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles , 2018 .

[51]  Somen Mondal,et al.  Incorporation of Coumarin 6 in cyclodextrins: microcrystals to lamellar composites , 2015 .

[52]  Xilong Yan,et al.  Synthesis and study on hydrolytic properties of fluorescein esters , 2007 .

[53]  N. Colthup CHAPTER 12 – COMPOUNDS CONTAINING BORON, SILICON, PHOSPHORUS, SULFUR, OR HALOGEN , 1975 .