Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

Remote sensing-based woody biomass quantification in sparsely-vegetated areas is often limited when using only common broadband vegetation indices as input data for correlation with ground-based measured biomass information. Red edge indices and texture attributes are often suggested as a means to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data. Model performance was evaluated based on cross-validation bias, standard deviation and Root Mean Square Error (RMSE) at the logarithmic and non-logarithmic scales. Both models achieved rather limited performances in wood volume prediction. Nonetheless, model performance increased with red edge indices and texture attributes, which shows that they play an important role in semi-arid regions with sparse vegetation.

[1]  A. Gitelson,et al.  Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. , 2009, American journal of botany.

[2]  G. Foody,et al.  Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions , 2012 .

[3]  A. Huete,et al.  A review of vegetation indices , 1995 .

[4]  Jason C. Neff,et al.  Estimates of Aboveground Biomass from Texture Analysis of Landsat Imagery , 2014, Remote. Sens..

[5]  K. Moffett,et al.  Remote Sens , 2015 .

[6]  Vescovo Loris,et al.  Mapping the green herbage ratio of grasslands using both aerial and satellite-derived spectral reflectance , 2006 .

[7]  B. Wylie,et al.  Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands a case study , 2002 .

[8]  Fumin Wang,et al.  New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice , 2007 .

[9]  D. H. Knight,et al.  Aims and Methods of Vegetation Ecology , 1974 .

[10]  Martin Brandt,et al.  Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982-2010) , 2014, Remote. Sens..

[11]  Tal Svoray,et al.  Herbaceous biomass retrieval in habitats of complex composition: a model merging SAR images with unmixed landsat TM data , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  H. R. Gray,et al.  The form and taper of forest-tree stems , 1956 .

[13]  M. Cannell,et al.  Woody biomass of forest stands , 1984 .

[14]  J. Nichol,et al.  Improved forest biomass estimates using ALOS AVNIR-2 texture indices , 2011 .

[15]  G. Baskerville Use of Logarithmic Regression in the Estimation of Plant Biomass , 1972 .

[16]  Giovanni Forzieri,et al.  Satellite retrieval of woody biomass for energetic reuse of riparian vegetation , 2012 .

[17]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[18]  W. E. Larson,et al.  Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. , 2000 .

[19]  F. J. García-Haro,et al.  A generalized soil-adjusted vegetation index , 2002 .

[20]  Christoph Wiedemann,et al.  Thermal Insulation in High Mountainous Regions , 2012 .

[21]  A. Diouf,et al.  Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal , 2001 .

[22]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[23]  Alexander Brenning,et al.  Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[24]  J. Li,et al.  MODIS-based remote-sensing monitoring of the spatiotemporal patterns of China's grassland vegetation growth , 2013 .

[25]  S. I. Pogosyan,et al.  Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments , 2003, Russian Journal of Plant Physiology.

[26]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[27]  A. Baccini,et al.  Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda , 2012 .

[28]  Andrew K. Skidmore,et al.  Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy , 2009 .

[29]  Hans Hurni,et al.  Rural energy consumption and land degradation in a post-Soviet setting – an example from the west Pamir mountains in Tajikistan , 2007 .

[30]  Martin Brandt,et al.  Woody vegetation and land cover changes in the Sahel of Mali (1967-2011) , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[31]  K. J. Wessels,et al.  Relationship between herbaceous biomass and 1‐km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa , 2006 .

[32]  J. Mas,et al.  Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico , 2013 .

[33]  Sandra Eckert,et al.  Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data , 2012, Remote. Sens..

[34]  A. Luckman,et al.  Texture in airborne SAR imagery of tropical forest and its relationship to forest regeneration stage , 1997 .

[35]  Alexander Brenning,et al.  Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting , 2015 .

[36]  Pacific Northwest Forest,et al.  Tree form quotients as variables in volume estimation , 1985 .

[37]  Clement Atzberger,et al.  First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe , 2016, Remote. Sens..

[38]  Xiaosong Li,et al.  Potential of high resolution RapidEye data for sparse vegetation fraction mapping in arid regions , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[39]  Tal Svoray,et al.  Multidate adaptive unmixing and its application to analysis of ecosystem transitions along a climatic gradient , 2002 .

[40]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[41]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[42]  S. Brantley,et al.  Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies , 2011 .

[43]  Stefan Dech,et al.  Derivation of biomass information for semi-arid areas using remote-sensing data , 2012 .

[44]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[45]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[46]  Cyrus Samimi,et al.  BIOMASS ESTIMATION FOR LAND USE MANAGEMENT AND FIRE MANAGEMENT USING LANDSAT-TM AND -ETM+ , 2002 .

[47]  Kim André Vanselow,et al.  Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests , 2014, Remote. Sens..

[48]  J. Privette,et al.  Impact of Tissue, Canopy, and Landscape Factors on the Hyperspectral Reflectance Variability of Arid Ecosystems , 2000 .

[49]  Alexander Brenning,et al.  Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment: Advantages and Limitations , 2015, Remote. Sens..

[50]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[51]  Muhammad Ali,et al.  Estimation and Validation of RapidEye-Based Time-Series of Leaf Area Index for Winter Wheat in the Rur Catchment (Germany) , 2015, Remote. Sens..

[52]  Christopher Conrad,et al.  Quantifying and mapping ecosystem services supplies and demands: a review of remote sensing applications. , 2012, Environmental science & technology.

[53]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[54]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[55]  Andrew K. Skidmore,et al.  Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[56]  Harald Zandler,et al.  Assessment of Woody Biomass and Solar Energy Resources with Remote Sensing and GIS Techniques : A Regional Study in the High Mountains of the Eastern Pamirs (Tajikistan) , 2015 .

[57]  Jan Verbesselt,et al.  Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices , 2011 .

[58]  Heather McNairn,et al.  International Journal of Applied Earth Observation and Geoinformation , 2014 .

[59]  A. Shvidenko Ecosystems and Human Well-Being: Synthesis , 2005 .

[60]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[61]  Julien Radoux,et al.  Sentinel-2's Potential for Sub-Pixel Landscape Feature Detection , 2016, Remote. Sens..

[62]  R. Phillips,et al.  Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie , 2007 .

[63]  Xin-shi Zhang,et al.  Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method , 2011 .

[64]  Khukmatullo M. Akhmadov,et al.  Effects of Grazing on Biodiversity, Productivity, and Soil Erosion of Alpine Pastures in Tajik Mountains , 2006 .

[65]  C. Kleinn,et al.  Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory , 2009 .

[66]  C. Samimi,et al.  Biomass estimation using Landsat-TM and -ETM+. Towards a regional model for Southern Africa? , 2004 .

[67]  D. Maselli,et al.  Knowledge for Sustainable Development in the Tajik Pamir Mountains , 2005 .

[68]  Michael L. Roderick,et al.  The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia , 2003 .

[69]  Tsuyoshi Akiyama,et al.  Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China , 2005 .

[70]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[71]  Robert Hable,et al.  Factors Influencing Households' Firewood Consumption in the Western Pamirs, Tajikistan , 2014 .

[72]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[73]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[74]  Jiaguo Qi,et al.  Biophysical attributes estimation from satellite images in arid regions , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[75]  Alan A. Ager,et al.  Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland , 2011 .

[76]  Richard Gloaguen,et al.  Improving the Estimation of Above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran) , 2014, Remote. Sens..

[77]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[78]  O. Mutanga,et al.  Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas , 2015 .

[79]  Michael E. Schaepman,et al.  Directional sensitivity analysis of vegetation indices from multi-angular CHRIS/PROBA data , 2006 .

[80]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[81]  A. Gitelson,et al.  Remote estimation of chlorophyll content in higher plant leaves , 1997 .