Superconvergence of the split least‐squares method for second‐order hyperbolic equations

This article studies superconvergence phenomena of the split least-squares mixed finite element method for second-order hyperbolic equations. By selecting the least-squares functional properly, the procedure can be split into two independent symmetric positive definite subprocedures, one of which is for the primitive unknown and the other is for the flux. Based on interpolation operators and an auxiliary projection, superconvergent H1 error estimates for the primary variable u and L2 error estimates for the introduced flux variable σ are obtained under the standard quasiuniform assumptions on finite element partition. A numerical example is given to show the performance of the introduced scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 222-238, 2014

[1]  T. Dupont,et al.  A Priori Estimates for Mixed Finite Element Approximations of Second Order Hyperbolic Equations with , 1996 .

[2]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[3]  C. M. Mota Soares,et al.  Layerwise mixed least-squares finite element models for static and free vibration analysis of multilayered composite plates , 2010 .

[4]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[5]  Sang Dong Kim,et al.  Split least-squares finite element methods for linear and nonlinear parabolic problems , 2009 .

[6]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[7]  Hui Guo,et al.  A remark on least-squares Galerkin procedures for pseudohyperbolic equations , 2009 .

[8]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[9]  Hui Guo,et al.  Least-squares Galerkin procedure for second-order hyperbolic equations , 2011, J. Syst. Sci. Complex..

[10]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[11]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[12]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[13]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[14]  Sang Dong Kim,et al.  A remark on least-squares mixed element methods for reaction-diffusion problems , 2007 .

[15]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[16]  Yanping Chen,et al.  Superconvergence of least-squares mixed finite element for symmetric elliptic problems , 2004 .

[17]  Yunqing Huang,et al.  The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .