Brain Decoding for Brain Mapping: Definition, Heuristic Quantification, and Improvement of Interpretability in Group MEG Decoding

In the last century, a huge multi-disciplinary scientific endeavor is devoted to answer the historical questions in understanding the brain functions. Among the statistical methods used for this purpose, brain decoding provides a tool to predict the mental state of a human subject based on the recorded brain signal. Brain decoding is widely applied in the contexts of brain-computer interfacing, medical diagnosis, and multivariate hypothesis testing on neuroimaging data. In the latest case, linear classifiers are generally employed to discriminate between experimental conditions. Then, the derived weights are visualized in the form of brain maps to further study the spatio-temporal patterns of the underlying neurophysiological activity. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal-to-noise ratio, across-subject variability, and the high dimensionality of the neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this thesis, as the primary contribution, we propose a theoretical definition of interpretability in linear brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. As an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. We propose to combine the approximated interpretability and the generalization performance of the model into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future. As the secondary contribution, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial MEG decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. We evaluated the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. Our experimental results demonstrate that the multi-task joint feature learning framework is capable of recovering meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. The presented methodology facilitates the application of brain decoding for characterizing the fine-level distinctive patterns of brain activity in group-level inference on neuroimaging data.

[1]  S. Prabhakar,et al.  P300 in newly diagnosed non-dementing Parkinson's disease: effect of dopaminergic drugs. , 2000, Neurology India.

[2]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[3]  Subramanian Ramanathan,et al.  Decoding affect in videos employing the MEG brain signal , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[4]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[5]  Lauri Parkkonen,et al.  MEG in the study of higher cortical functions , 2008 .

[6]  Stefan Haufe,et al.  Dimensionality reduction for the analysis of brain oscillations , 2014, NeuroImage.

[7]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[8]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[9]  Joachim M. Buhmann,et al.  Model-based feature construction for multivariate decoding , 2011, NeuroImage.

[10]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[11]  Liva Ralaivola,et al.  Multiple subject learning for inter-subject prediction , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[12]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[13]  Andrea Passerini,et al.  Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects , 2017, Front. Neurosci..

[14]  Rajen Dinesh Shah,et al.  Variable selection with error control: another look at stability selection , 2011, 1105.5578.

[15]  Riitta Salmelin,et al.  Magnetoencephalography: From SQUIDs to neuroscience Neuroimage 20th Anniversary Special Edition , 2012, NeuroImage.

[16]  Todd C. Handy,et al.  Event-related potentials : a methods handbook , 2005 .

[17]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[18]  E Donchin,et al.  The mental prosthesis: assessing the speed of a P300-based brain-computer interface. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[19]  D J Weber,et al.  Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Hongzhe Li,et al.  In Response to Comment on "Network-constrained regularization and variable selection for analysis of genomic data" , 2008, Bioinform..

[21]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[22]  Concha Bielza,et al.  A Survey of L1 Regression , 2013 .

[23]  G. Muehllehner,et al.  Positron emission tomography , 2006, Physics in medicine and biology.

[24]  Jelle J. Goeman,et al.  Better-than-chance classification for signal detection. , 2016, Biostatistics.

[25]  Subramanian Ramanathan,et al.  DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses , 2015, IEEE Transactions on Affective Computing.

[26]  Andrea Passerini,et al.  Interpretability in Linear Brain Decoding , 2016, 1606.05672.

[27]  Thomas Naselaris,et al.  Resolving Ambiguities of MVPA Using Explicit Models of Representation , 2015, Trends in Cognitive Sciences.

[28]  Pedro M. Domingos A Unified Bias-Variance Decomposition for Zero-One and Squared Loss , 2000, AAAI/IAAI.

[29]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[30]  Lauri Parkkonen,et al.  The brain timewise: how timing shapes and supports brain function , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Gaël Varoquaux,et al.  Identifying Predictive Regions from fMRI with TV-L1 Prior , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[32]  Activation of the Human Auditory Cortex by Various Sound Sequences : Neuromagnetic Studies , 1989 .

[33]  Massimiliano Pontil,et al.  The Benefit of Multitask Representation Learning , 2015, J. Mach. Learn. Res..

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[36]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[37]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[38]  Guillermo A. Cecchi,et al.  High-Dimensional Sparse Structured Input-Output Models, with Applications to GWAS , 2014 .

[39]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[40]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[41]  Massimiliano Pontil,et al.  Multi-Task Feature Learning , 2006, NIPS.

[42]  Stefan Haufe,et al.  Parameter interpretation, regularization and source localization in multivariate linear models , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[43]  S. Goodman,et al.  Multiple comparisons, explained. , 1998, American journal of epidemiology.

[44]  Robert Tibshirani,et al.  Bias, Variance and Prediction Error for Classification Rules , 1996 .

[45]  Thierry Pun,et al.  DEAP: A Database for Emotion Analysis ;Using Physiological Signals , 2012, IEEE Transactions on Affective Computing.

[46]  Gholam-Ali Hossein-Zadeh,et al.  A mutual information‐based metric for evaluation of fMRI data‐processing approaches , 2011, Human brain mapping.

[47]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[48]  Ioannis Patras,et al.  Linear Maximum Margin Classifier for Learning from Uncertain Data , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Lars Kai Hansen,et al.  Nonlinear versus Linear Models in Functional Neuroimaging: Learning Curves and Generalization Crossover , 1997, IPMI.

[50]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[51]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[52]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[53]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[54]  Heikki Huttunen,et al.  Mind reading with regularized multinomial logistic regression , 2012, Machine Vision and Applications.

[55]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[56]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[57]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[58]  Marta Kutas,et al.  Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. , 2011, Psychophysiology.

[59]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[60]  D. Cohen Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents , 1968, Science.

[61]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[62]  Thomas E. Nichols,et al.  Controlling the familywise error rate in functional neuroimaging: a comparative review , 2003, Statistical methods in medical research.

[63]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[64]  Guillermo A. Cecchi,et al.  Stability and Reproducibility in fMRI Analysis , 2014 .

[65]  R. Poldrack Region of interest analysis for fMRI. , 2007, Social cognitive and affective neuroscience.

[66]  Paolo Avesani,et al.  MEG decoding across subjects , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[67]  Barak A. Pearlmutter,et al.  Single-trial detection in EEG and MEG: Keeping it linear , 2003, Neurocomputing.

[68]  Timon Schroeter,et al.  Visual Interpretation of Kernel‐Based Prediction Models , 2011, Molecular informatics.

[69]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[70]  Robert D. Nowak,et al.  Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis , 2013, NIPS.

[71]  Michel Besserve,et al.  Classification methods for ongoing EEG and MEG signals. , 2007, Biological research.

[72]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[73]  Danilo Bzdok,et al.  Neuroimaging Research: From Null-Hypothesis Falsification to Out-of-Sample Generalization , 2017, Educational and psychological measurement.

[74]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[75]  Johannes Lenhard,et al.  Models and Statistical Inference: The Controversy between Fisher and Neyman–Pearson , 2006, The British Journal for the Philosophy of Science.

[76]  Klaus-Robert Müller,et al.  Introduction to machine learning for brain imaging , 2011, NeuroImage.

[77]  Brian Knutson,et al.  Interpretable Classifiers for fMRI Improve Prediction of Purchases , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[78]  Russell A. Poldrack,et al.  What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis , 2014, NeuroImage.

[79]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[80]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[81]  C. Rosazza,et al.  Resting-state brain networks: literature review and clinical applications , 2011, Neurological Sciences.

[82]  Jiayu Zhou,et al.  A multi-task learning formulation for predicting disease progression , 2011, KDD.

[83]  Stefan Haufe,et al.  On the Interpretability of Linear Multivariate Neuroimaging Analyses : Filters , Patterns and their Relationship , 2012 .

[84]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[85]  Gaël Varoquaux,et al.  Beyond Brain Reading: Randomized Sparsity and Clustering to Simultaneously Predict and Identify , 2011, MLINI.

[86]  A. Filler The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI , 2009 .

[87]  Jieping Ye,et al.  Multi-Task Feature Learning Via Efficient l2, 1-Norm Minimization , 2009, UAI.

[88]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[89]  Andrea Passerini,et al.  Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning , 2017, Journal of Neuroscience Methods.

[90]  Fernando Maestú,et al.  The Role of MEG in Unveiling Cognition , 2011 .

[91]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[92]  J. Connolly,et al.  Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task , 2005, Clinical Neurophysiology.

[93]  R. Ilmoniemi,et al.  Sampling theory for neuromagnetic detector arrays , 1993, IEEE Transactions on Biomedical Engineering.

[94]  Guillermo A. Cecchi,et al.  Practical Applications of Sparse Modeling , 2014 .

[95]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[96]  A. Ravishankar Rao,et al.  Prediction and interpretation of distributed neural activity with sparse models , 2009, NeuroImage.

[97]  L. Bokobza Near Infrared Spectroscopy , 1998 .

[98]  Bin Yu,et al.  Estimation Stability With Cross-Validation (ESCV) , 2013, 1303.3128.

[99]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[100]  Jinbo Bi,et al.  Support Vector Classification with Input Data Uncertainty , 2004, NIPS.

[101]  Yilun Wang,et al.  Randomized structural sparsity via constrained block subsampling for improved sensitivity of discriminative voxel identification , 2014, NeuroImage.

[102]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[103]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[104]  Michael J. Brammer,et al.  Bayesian multi-task learning for decoding multi-subject neuroimaging data , 2014, NeuroImage.

[105]  Sandro Vega-Pons,et al.  Multi-Task Learning for Interpretation of Brain Decoding Models , 2014, MLINI@NIPS.

[106]  Kush R. Varshney,et al.  Learning interpretable classification rules using sequential rowsampling , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[107]  Tom Heskes,et al.  Interpreting single trial data using groupwise regularisation , 2009, NeuroImage.

[108]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[109]  Clay B. Holroyd,et al.  Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. , 2004, Psychophysiology.

[110]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[111]  M. Caramia,et al.  Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms , 2008 .

[112]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[113]  L. M. M.-T. Theory of Probability , 1929, Nature.

[114]  Yogendra P. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[115]  B. Oken Electrophysiology of Mind: Event-Related Brain Potentials and Cognition , 1996 .

[116]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[117]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[118]  Giorgio Valentini,et al.  Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods , 2004, J. Mach. Learn. Res..

[119]  A. Soddu,et al.  Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings , 2003, Journal of neurology, neurosurgery, and psychiatry.

[120]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[121]  Donghyeon Yu,et al.  Classification of spectral data using fused lasso logistic regression , 2015 .

[122]  R. Hari,et al.  The brain in time: insights from neuromagnetic recordings , 2010, Annals of the New York Academy of Sciences.

[123]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[124]  Brian S. Yandell,et al.  Practical Data Analysis for Designed Experiments , 1998 .

[125]  Mert R. Sabuncu A Universal and Efficient Method to Compute Maps from Image-Based Prediction Models , 2014, MICCAI.

[126]  R. Nickerson,et al.  Null hypothesis significance testing: a review of an old and continuing controversy. , 2000, Psychological methods.

[127]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[128]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[129]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[130]  E. Lehmann The Fisher, Neyman-Pearson Theories of Testing Hypotheses: One Theory or Two? , 1993 .

[131]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[132]  Robert D. Nowak,et al.  Classification With the Sparse Group Lasso , 2016, IEEE Transactions on Signal Processing.

[133]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[134]  Massimiliano Pontil,et al.  Convex multi-task feature learning , 2008, Machine Learning.

[135]  Gaël Varoquaux,et al.  Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering , 2012, ICML.

[136]  Karl J. Friston,et al.  A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration , 2011, Front. Hum. Neurosci..

[137]  T. Picton,et al.  The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. , 1987, Psychophysiology.

[138]  Gaël Varoquaux,et al.  Total Variation Regularization for fMRI-Based Prediction of Behavior , 2011, IEEE Transactions on Medical Imaging.

[139]  Paul R. Cohen,et al.  Multiple Comparisons in Induction Algorithms , 2000, Machine Learning.

[140]  Andres Hoyos Idrobo,et al.  Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines , 2016, NeuroImage.

[141]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[142]  J. Berger Could Fisher, Jeffreys and Neyman Have Agreed on Testing? , 2003 .

[143]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[144]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[145]  Luca Baldassarre,et al.  Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding , 2017, Front. Neurosci..

[146]  Bertrand Thirion,et al.  Graph-Based Inter-Subject Pattern Analysis of fMRI Data , 2014, PloS one.

[147]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[148]  P. Sundgren,et al.  Diffusion tensor imaging of the brain: review of clinical applications , 2004, Neuroradiology.

[149]  Y. Benjamini,et al.  Adaptive linear step-up procedures that control the false discovery rate , 2006 .

[150]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[151]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[152]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[153]  R. Hari,et al.  10 – Magnetoencephalographic Characterization of Dynamic Brain Activation: Basic Principles and Methods of Data Collection and Source Analysis , 2002 .

[154]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[155]  Motoaki Kawanabe,et al.  How to Explain Individual Classification Decisions , 2009, J. Mach. Learn. Res..

[156]  Henry A. Nasrallah,et al.  Evoked potentials in subjects at risk for Alzheimer's Disease , 1995, Psychiatry Research.

[157]  James V. Haxby,et al.  Multivariate pattern analysis of fMRI: The early beginnings , 2012, NeuroImage.

[158]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[159]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[160]  M. C. Spruill,et al.  Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .

[161]  Yoav Benjamini,et al.  Simultaneous and selective inference: Current successes and future challenges , 2010, Biometrical journal. Biometrische Zeitschrift.

[162]  Sabine Leske,et al.  Listen to Yourself: The Medial Prefrontal Cortex Modulates Auditory Alpha Power During Speech Preparation. , 2015, Cerebral cortex.

[163]  Sandro Vega-Pons,et al.  The Kernel Two-Sample Test for Brain Networks , 2015, 1511.06120.

[164]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[165]  E Donchin,et al.  Brain-computer interface technology: a review of the first international meeting. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[166]  Polina Golland,et al.  Detecting stable distributed patterns of brain activation using Gini contrast , 2011, NeuroImage.

[167]  Klaus-Robert Müller,et al.  Analyzing Local Structure in Kernel-Based Learning: Explanation, Complexity, and Reliability Assessment , 2013, IEEE Signal Processing Magazine.

[168]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[169]  Sydney S. Cash,et al.  Decoding word and category-specific spatiotemporal representations from MEG and EEG , 2011, NeuroImage.

[170]  Bertrand Thirion,et al.  How machine learning is shaping cognitive neuroimaging , 2014, GigaScience.

[171]  Philip S. Yu,et al.  A Survey of Uncertain Data Algorithms and Applications , 2009, IEEE Transactions on Knowledge and Data Engineering.

[172]  Thorsten Dickhaus,et al.  Simultaneous Statistical Inference , 2014, Springer Berlin Heidelberg.

[173]  J. Haynes A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives , 2015, Neuron.

[174]  H. Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1937, Archiv für Psychiatrie und Nervenkrankheiten.

[175]  Tonio Ball,et al.  Causal interpretation rules for encoding and decoding models in neuroimaging , 2015, NeuroImage.

[176]  Subramanian Ramanathan,et al.  User-centric Affective Video Tagging from MEG and Peripheral Physiological Responses , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[177]  R. Hari Magnetoencephalography studies of action observation , 2015 .

[178]  Francis R. Bach,et al.  Learning the Structure for Structured Sparsity , 2014, IEEE Transactions on Signal Processing.

[179]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[180]  J. Polich Updating P300: An integrative theory of P3a and P3b , 2007, Clinical Neurophysiology.

[181]  Paul Sajda,et al.  Fast Bootstrapping and Permutation Testing for Assessing Reproducibility and Interpretability of Multivariate fMRI Decoding Models , 2013, PloS one.

[182]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[183]  Francisco J. Valverde-Albacete,et al.  100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox , 2014, PloS one.

[184]  Paolo Avesani,et al.  Discrete Cosine Transform for MEG Signal Decoding , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[185]  E. Crivellato,et al.  Soul, mind, brain: Greek philosophy and the birth of neuroscience , 2007, Brain Research Bulletin.

[186]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[187]  Nicu Sebe,et al.  Movie Genre Classification by Exploiting MEG Brain Signals , 2015, ICIAP.

[188]  Aapo Hyvärinen,et al.  Decoding Magnetoencephalographic Rhythmic Activity Using Spectrospatial Information , 2022 .

[189]  R. Hari,et al.  Timing of human cortical functions during cognition: role of MEG , 2000, Trends in Cognitive Sciences.

[190]  Lars Kai Hansen,et al.  Model sparsity and brain pattern interpretation of classification models in neuroimaging , 2012, Pattern Recognit..

[191]  Matthew de Brecht,et al.  Combining sparseness and smoothness improves classification accuracy and interpretability , 2012, NeuroImage.

[192]  E. Maris,et al.  Physiological Plausibility Can Increase Reproducibility in Cognitive Neuroscience , 2016, Trends in Cognitive Sciences.

[193]  Mark S. Cohen,et al.  Common component classification: What can we learn from machine learning? , 2011, NeuroImage.

[194]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[195]  Kara D. Federmeier,et al.  Picture the difference: electrophysiological investigations of picture processing in the two cerebral hemispheres , 2002, Neuropsychologia.

[196]  Jukka Nenonen,et al.  Novel Noise Reduction Methods , 2019, Magnetoencephalography.

[197]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[198]  E. Maris Statistical testing in electrophysiological studies. , 2012, Psychophysiology.

[199]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[200]  Y. Hochberg A sharper Bonferroni procedure for multiple tests of significance , 1988 .

[201]  F. Piccione,et al.  P300-based brain computer interface: Reliability and performance in healthy and paralysed participants , 2006, Clinical Neurophysiology.

[202]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[203]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[204]  E. Bigler,et al.  Neuroimaging in psychiatry. , 1998, The Psychiatric clinics of North America.

[205]  Michael Brammer,et al.  The role of neuroimaging in diagnosis and personalized medicine-current position and likely future directions , 2009, Dialogues in clinical neuroscience.

[206]  S. Hillyard,et al.  Visual evoked potentials and selective attention to points in space , 1977 .

[207]  David H. Wolpert,et al.  An Efficient Method To Estimate Bagging's Generalization Error , 1999, Machine Learning.