Molecular Phylogeny and Description of the Novel Katablepharid Roombia truncata gen. et sp. nov., and Establishment of the Hacrobia Taxon nov

Background Photosynthetic eukaryotes with a secondary plastid of red algal origin (cryptophytes, haptophytes, stramenopiles, dinoflagellates, and apicomplexans) are hypothesized to share a single origin of plastid acquisition according to Chromalveolate hypothesis. Recent phylogenomic analyses suggest that photosynthetic “chromalveolates” form a large clade with inclusion of several non-photosynthetic protist lineages. Katablepharids are one such non-photosynthetic lineage closely related to cryptophytes. Despite their evolutionary and ecological importance, katablepharids are poorly investigated. Methodology/Principal Findings Here, we report a newly discovered flagellate, Roombia truncata gen. et sp. nov., that is related to katablepharids, but is morphologically distinct from othermembers of the group in the following ways: (1) two flagella emerge from a papilla-like subapical protrusion, (2) conspicuous ejectisomes are aligned in multiple (5–11) rows, (3) each ejectisome increases in size towards the posterior end of the rows, and (4) upon feeding, a part of cytoplasm elastically stretch to engulf whole prey cell. Molecular phylogenies inferred from Hsp90, SSU rDNA, and LSU rDNA sequences consistently and strongly show R. truncata as the sister lineage to all other katablepharids, including lineages known only from environmental sequence surveys. A close association between katablepharids and cryptophytes was also recovered in most analyses. Katablepharids and cryptophytes are together part of a larger, more inclusive, group that also contains haptophytes, telonemids, centrohelids and perhaps biliphytes. The monophyly of this group is supported by several different molecular phylogenetic datasets and one shared lateral gene transfer; therefore, we formally establish this diverse clade as the “Hacrobia.” Conclusions/Significance Our discovery of R. truncata not only expands our knowledge in the less studied flagellate group, but provide a better understanding of phylogenetic relationship and evolutionary view of plastid acquisition/losses of Hacrobia. Being an ancestral to all katablepharids, and readily cultivable, R. truncata is a good candidate for multiple gene analyses that will contribute to future phylogenetic studies of Hacrobia.

[1]  P. Kugrens,et al.  Ultrastructure, biogenesis, and functions of extrusive organelles in selected non-ciliate protists , 1994, Protoplasma.

[2]  N. Patron,et al.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates , 2004, Eukaryotic Cell.

[3]  H. Brinkmann,et al.  Plastid Isoprenoid Metabolism in the Oyster Parasite Perkinsus marinus Connects Dinoflagellates and Malaria Pathogens—New Impetus for Studying Alveolates , 2007, Journal of Molecular Evolution.

[4]  T. Kuroiwa,et al.  A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. , 2008, Molecular biology and evolution.

[5]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[6]  N. Okamoto,et al.  Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. , 2006, Protist.

[7]  Y. Inagaki,et al.  Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages , 2007, Current Biology.

[8]  T. Weisse,et al.  Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance , 2001 .

[9]  P. Keeling Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis 1 , 2009, The Journal of eukaryotic microbiology.

[10]  H. Arndt,et al.  Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season , 2001 .

[11]  E. Sherr,et al.  Significance of predation by protists in aquatic microbial food webs , 2004, Antonie van Leeuwenhoek.

[12]  T. Cavalier-smith,et al.  Chromalveolate diversity and cell megaevolution: interplay of membranes, genomes and cytoskeleton. , 2004 .

[13]  P. Kugrens,et al.  Cryptomonads from the Salton Sea, California , 2002, Hydrobiologia.

[14]  J. Palmer,et al.  An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters , 2006, BMC Biology.

[15]  A. Simpson,et al.  Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. , 2006, Molecular biology and evolution.

[16]  David E. Richardson,et al.  OnlineOpen: This , 2006 .

[17]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[18]  Kazutaka Katoh,et al.  Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework , 2008, BMC Bioinformatics.

[19]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[20]  N. Okamoto,et al.  The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/ Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. , 2005, Protist.

[21]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[22]  D. Bhattacharya,et al.  Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. , 2007, Molecular biology and evolution.

[23]  D. Vaulot,et al.  Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes , 2007, Science.

[24]  P. Kugrens,et al.  ULTRASTRUCTURAL VARIATIONS IN CRYPTOMONAD FLAGELLA 1 , 1987 .

[25]  D. Vaulot,et al.  The diversity of small eukaryotic phytoplankton (< or =3 microm) in marine ecosystems. , 2008, FEMS microbiology reviews.

[26]  N. Vørs Ultrastructure and autecology of the marine, heterotrophic flagellate Leucocryptos marina (Braarud) Butcher 1967 (Katablepharidaceae/Kathablepharidae), with a discussion of the genera Leucocryptos and Katablepharis/Kathablepharis. , 1992, European journal of protistology.

[27]  N. Okamoto,et al.  A Secondary Symbiosis in Progress? , 2005, Science.

[28]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[29]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[30]  M. L. Teles-Grilo,et al.  Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? , 2007, European journal of protistology.

[31]  C. Slamovits,et al.  Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. , 2008, Molecular biology and evolution.

[32]  D. Bhattacharya,et al.  Multiple Genes of Apparent Algal Origin Suggest Ciliates May Once Have Been Photosynthetic , 2008, Current Biology.

[33]  Y. Inagaki,et al.  Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates , 2009, Genome biology and evolution.

[34]  Fabien Burki,et al.  Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes , 2008, Biology Letters.

[35]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[36]  B Franz Lang,et al.  The tree of eukaryotes. , 2005, Trends in ecology & evolution.

[37]  Ansgar Gruber,et al.  Der1-mediated preprotein import into the periplastid compartment of chromalveolates? , 2007, Molecular biology and evolution.

[38]  D. Vaulot,et al.  Telonemia, a new protist phylum with affinity to chromist lineages , 2006, Proceedings of the Royal Society B: Biological Sciences.

[39]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[40]  Fabrice Not,et al.  Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. , 2007, Environmental microbiology.

[41]  David J. Patterson,et al.  Some flagellates (Protista) from tropical marine sediments , 1990 .

[42]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[43]  D. Moreira,et al.  Present status of the molecular ecology of kathablepharids. , 2006, Protist.

[44]  D. Swofford,et al.  The Phylogenetic Handbook: Phylogeny inference based on parsimony and other methods using PAUP , 2009 .

[45]  E. Braun,et al.  PHYLOGENOMICS AND SECONDARY PLASTIDS: A LOOK BACK AND A LOOK AHEAD 1 , 2008, Journal of phycology.

[46]  L. Hug,et al.  Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” , 2009, Proceedings of the National Academy of Sciences.

[47]  K. Jakobsen,et al.  Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. , 2005, International journal of systematic and evolutionary microbiology.

[48]  M. Sleigh,et al.  The Quantitative Occurrence of Different Taxa of Heterotrophic Flagellates in Southampton Water, U.K. , 2000 .

[49]  P. Keeling,et al.  Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. , 2003, Molecular biology and evolution.

[50]  Robert P. Hirt,et al.  Organelles, Genomes and Eukaryote Phylogeny : An Evolutionary Synthesis in the Age of Genomics , 2004 .

[51]  L. Katz,et al.  BMC Evolutionary Biology BioMed Central Research article Broadly sampled multigene trees of eukaryotes , 2008 .

[52]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[53]  B. Leander,et al.  Dinoflagellate, Euglenid, or Cercomonad? The Ultrastructure and Molecular Phylogenetic Position of Protaspis grandis n. sp. , 2006, The Journal of eukaryotic microbiology.

[54]  D. Patterson,et al.  Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia , 2000 .

[55]  P. Kugrens,et al.  FEEDING APPARATUS OF THE COLORLESS FLAGELLATE KATABLEPHARIS (CRYPTOPHYCEAE) 1 , 1991 .

[56]  P. Keeling,et al.  On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. , 2005, International journal of systematic and evolutionary microbiology.

[57]  P. Kugrens,et al.  Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb.nov. , 1999, Protist.

[58]  K. Jakobsen,et al.  Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. , 2007, Protist.