Biotechnology in the wood industry

Abstract Wood is a natural, biodegradable and renewable raw material, used in construction and as a feedstock in the paper and wood product industries and in fuel production. Traditionally, biotechnology found little attention in the wood product industries, apart from in paper manufacture. Now, due to growing environmental concern and increasing scientific knowledge, legal restrictions to conventional processes have altered the situation. Biotechnological approaches in the area of wood protection aim at enhancing the treatability of wood with preservatives and replacing chemicals with biological control agents. The substitution of conventional chemical glues in the manufacturing of board materials is achieved through the application of fungal cultures and isolated fungal enzymes. Moreover, biotechnology plays an important role in the waste remediation of preservative-treated waste wood.

[1]  T. K. Kirk,et al.  Quantitative Changes in Structural Components of Conifer Woods During Decay by White- and Brown-Rot Fungi , 1973 .

[2]  Robert A. Blanchette,et al.  Microbial and Enzymatic Degradation of Wood and Wood Components , 2012, Springer Series in Wood Science.

[3]  A. Conesa,et al.  Calnexin Overexpression Increases Manganese Peroxidase Production in Aspergillus niger , 2002, Applied and Environmental Microbiology.

[4]  A. Kharazipour,et al.  Enzymatic activation of wood fibres as a means for the production of wood composites , 1997 .

[5]  J. W. Koenigs Hydrogen Peroxide and Iron: A Proposed System for Decomposition of Wood by Brown-rot Basidiomycetes , 1974 .

[6]  T. Schultz,et al.  Wood laminates glued by enzymatic oxidation of brown-rotted lignin , 1991 .

[7]  T. Yoshimoto,et al.  Artificial Modification of Bordered Pits in Softwoods : (1) Treatment with Sodium Hydroxide Solution , 1972 .

[8]  A. Peylo,et al.  Bewertung von Boraten als Holzschutzmittel , 2001, Holz als Roh- und Werkstoff.

[9]  B. Woodward,et al.  WOLFIPORIA COCOS : A POTENTIAL AGENT FOR COMPOSTING OR BIOPROCESSING DOUGLAS-FIR WOOD TREATED WITH COPPER-BASED PRESERVATIVES , 1998 .

[10]  T. Schultz,et al.  Utilization of Lignin Modified by Brown-Rot Fungi. I. Properties of Flakeboard Produced with a Brown-rotted Lignin Modified Phenolic Adhesive , 1990 .

[11]  R. Milner Application of biological control agents in mound building termites (Isoptera: Termitidae): Experiences with Metarhizium in Australia , 2003 .

[12]  C. Breuil,et al.  Nutrient Consumption and Pigmentation of Deep and Surface Colonizing Sapstaining Fungi in Pinus contorta , 2001 .

[13]  K. Tsunoda,et al.  Fungal Detoxification of Organoiodine Wood Preservatives. Part 2. Fungal Metabolism in the Decomposition of the Chemicals , 1992 .

[14]  F. Green,et al.  Mechanism of Brown-Rot decay : Paradigm or paradox , 1997 .

[15]  M. Wingfield,et al.  Pathogenicity of Ophiostoma piliferum (Cartapip 97(R) compared with that of other South African sap-staining fungi : research letter , 2002 .

[16]  A. Bruce,et al.  Assessment of the biocontrol potential of a Trichoderma viride isolate : Part I: Establishment of field and fungal cellar trials , 1999 .

[17]  K. Eriksson,et al.  Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. , 1975, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry.

[18]  F. J. Deverall,et al.  Degradation of Wood Preservatives by Fungi. , 1964, Applied microbiology.

[19]  W. Liese,et al.  Biological Investigations for the Improvement of the Permeability of Softwoods , 1970 .

[20]  S. Unkles,et al.  Generation of Benomyl Resistant Beauveria bassiana Strains and Their Infectivity Against Helicoverpa armigera , 2001 .

[21]  E. Record,et al.  Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. , 2002, European journal of biochemistry.

[22]  S. Kartal,et al.  Particleboard made from remediated CCA-treated wood : evaluation of panel properties , 2001 .

[23]  A. Bruce,et al.  The Yeast Debaryomyces hansenii as a Short-Term Biological Control Agent against Fungal Spoilage of Sawn Pinus sylvestris Timber , 2001 .

[24]  F. Wolfaardt,et al.  !Pathogenicity of Ophiostoma piliferum (Cartapip 97@)compared with that of other South African sap-staining fungi , 2002 .

[25]  T. Highley,et al.  Fungal degradation of wood treated with metal-based preservatives, 1: Fungal tolerance , 1996 .

[26]  C. Clausen,et al.  Removal of CCA from treated wood by oxalic acid extraction, steam explosion, and bacterial fermentation , 1998, Journal of Industrial Microbiology and Biotechnology.

[27]  A. Hüttermann,et al.  Polyphenoles for compounded materials , 1998 .

[28]  B. Pettersson,et al.  Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 3. Purification and physico-chemical characterization of an exo-1,4-beta-glucanase. , 1975, European journal of biochemistry.

[29]  H. Nimz,et al.  Untersuchungen zur Vernetzung technischer Sulfitablauge , 1976 .

[30]  P. Bajpai Application of Enzymes in the Pulp and Paper Industry , 1999, Biotechnology progress.

[31]  J. Vanneste,et al.  Biological control of sapstain fungi with natural products and biological control agents: a review of the work carried out in New Zealand , 2002 .

[32]  Changlu Wang,et al.  Isolation and evaluation of Beauveria bassiana for control of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) , 2003 .

[33]  D. Dietrich,et al.  Use of lignin-degrading fungi in the disposal of pentachlorophenol-treated wood , 1992, Journal of Industrial Microbiology.

[34]  Robert A. Blanchette,et al.  Biological control of pitch in pulp and paper production by Ophiostoma piliferum , 1992 .

[35]  R. Milner,et al.  A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). , 2000 .

[36]  Robert A. Blanchette,et al.  Cartapip™: a biopulping product for control of pitch and resin acid problems in pulp mills , 1993 .

[37]  H. Unbehaun,et al.  Investigation into the biotechnological modification of wood and its application in the wood‐based material industry , 2000 .

[38]  G. Gadd Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. , 1999, Advances in microbial physiology.

[39]  G. Pettersson,et al.  A critical review of cellobiose dehydrogenases. , 2000, Journal of biotechnology.

[40]  B. Woodward,et al.  Using copper-tolerant fungi to biodegrade wood treated with copper-based preservatives , 1999 .

[41]  F. Cui,et al.  The microbial degradation of chlorophenolic preservatives in spent, pressure-treated timber , 2004, Biodegradation.

[42]  L. Skibsted,et al.  Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibers from beech (Fagus sylvatica) , 1997, Applied Microbiology and Biotechnology.

[43]  A. Hüttermann,et al.  Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds , 2001, Applied Microbiology and Biotechnology.

[44]  B. Pettersson,et al.  Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. 1. Separation, purification and physico-chemical characterization of five endo-1,4-beta-glucanases. , 1975, European journal of biochemistry.

[45]  A. Rath The Use of Entomopathogenic Fungi for Control of Termites , 2000 .

[46]  M. Tien,et al.  Oxidation of persistent environmental pollutants by a white rot fungus. , 1985, Science.

[47]  H. Leithoff,et al.  Microbial conversion of wood treated with salt preservatives , 1996 .

[48]  A. Bruce,et al.  The biological control of Serpula lacrymans by Trichoderma species , 1998 .

[49]  B. Woodward,et al.  Tolerance of Wolfiporia cocos isolates to copper in agar media , 1999 .

[50]  Terry J. Beveridge,et al.  Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate , 2001, Applied and Environmental Microbiology.

[51]  R. Blanchette,et al.  Biological control of blue-stain fungi in wood , 1995 .

[52]  M. Reetz,et al.  Microbial lipases form versatile tools for biotechnology. , 1998, Trends in biotechnology.

[53]  Paul Decker,et al.  Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood. , 2002, AIHA journal : a journal for the science of occupational and environmental health and safety.

[54]  R. Blanchette,et al.  Biological Control of Blue Stain Fungi on Populus tremuloides Using Selected Ophiostoma Isolates , 1998 .

[55]  K. Eriksson,et al.  Cleavage and metabolism of methoxyl groups from vanillic and ferulic acids by brown-rot and soft-rot fungi , 1988 .

[56]  E. Roffael,et al.  Über die Herstellung von Holzspanplatten auf Basis von Sulfitablauge. I. Stand der Technik und eigene Untersuchungen , 1971 .

[57]  N. A. White,et al.  The impact of current research on the treatment of infestations by the dry rot fungus Serpula lacrymans , 1995 .

[58]  G. Pettersson,et al.  Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin , 2004, Applied Microbiology and Biotechnology.

[59]  T. Myles Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae , 2002 .

[60]  C. Felby,et al.  Pilot-scale production of fiberboards made by laccase oxidized wood fibers: board properties and evidence for cross-linking of lignin , 2002 .

[61]  J. Grima-Pettenati,et al.  Biochemistry and molecular biology of lignification. , 1995, The New phytologist.

[62]  Erwin Graf,et al.  Biologische und biotechnologische Verfahren gegen holzbewohnende Pilze – Eine Übersicht , 2001, Holz als Roh- und Werkstoff.

[63]  M. Ohkoshi,et al.  Increase of permeability of sugi by degrading bordered pit membranes with enzymes , 1987 .

[64]  C. Clausen Isolating metal‐tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood , 2000 .

[65]  Jürgen Klein,et al.  Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures , 2004, Applied Microbiology and Biotechnology.

[66]  J. Jellison,et al.  The role of cations in the biodegradation of wood by the brown rot fungi , 1997 .

[67]  川井 秀一 Pacific Rim Bio-Based Composites Symposium , 1993 .

[68]  A. Hüttermann,et al.  Enzymatic modification of lignin for technical use: strategies and results , 1989 .

[69]  V. Popa,et al.  Application of microorganisms and enzymes in the pulp and paper industry , 2000 .

[70]  M. Tien,et al.  Biotechnology of Lignin Degradation , 1995 .

[71]  R. Wheatley,et al.  The Effects of Specific Volatile Organic Compounds Produced by Trichoderma Spp. on the Growth of Wood Decay Basidiomycetes , 2001 .

[72]  J. Watkins,et al.  Treatability of U.S. wood species with pigment-emulsified creosote , 2000 .

[73]  R. Berka,et al.  Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae , 1997, Applied and environmental microbiology.

[74]  Karl Freudenberg,et al.  Constitution and Biosynthesis of Lignin , 1968 .

[75]  O. Collett Comparative Tolerance of the Brown-Rot Fungus Antrodia vaillantii (DC.:Fr.) Ryv. Isolates to Copper , 1992 .

[76]  W. G. Woods,et al.  An introduction to boron: history, sources, uses, and chemistry. , 1994, Environmental health perspectives.

[77]  C. Clausen,et al.  Enhanced removal of CCA from treated wood by Bacillus licheniformis in continuous culture , 1997 .

[78]  F. Adolf Über eine enzymatische Vorbehandlung von Nadelholz zur Verbesserung der Wegsamkeit , 1975 .

[79]  Sonia N Humphris,et al.  The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. , 2002, FEMS microbiology letters.

[80]  M. C. Valadares-Inglis,et al.  Transformation of the entomopathogenic fungus, Metarhizium flavoviride strain CG423 to benomyl resis , 1997 .

[81]  A. Séguin,et al.  Recent advances in the genetic transformation of trees. , 2001, Trends in biotechnology.

[82]  E. Back The Bonding Mechanism in Hardboard Manufacture Review Report , 2009 .

[83]  J. K. Grace Approaches to biological control of termites , 2003 .

[84]  H. Greaves The Effect of Some Wood-Inhabiting Bacteria on the Permeability Characteristics and Microscopic Features of Eucalyptus regnans and Pinus radiata Sapwood and Heartwood , 1970 .

[85]  José Dorado,et al.  Degradation and detoxification of softwood extractives by sapstain fungi , 2000 .

[86]  Bruce R. Johnson,et al.  Effect of Trichoderma viride and a contaminating bacterium on microstructure and permeability of Loblolly pine and Douglas fir , 1970 .

[87]  R. Blanchette,et al.  Biological Control of Blue Stain in Pulpwood: Mechanisms of Control used by Phlebiopsis gigantea , 2001 .

[88]  A. Ritschkoff,et al.  Screening of micro-organisms for decolorization of melanins produced by bluestain fungi , 2001, Applied Microbiology and Biotechnology.

[89]  W. Osbrink,et al.  Increased Mortality of Coptotermes formosanus (Isoptera: Rhinotermitidae) Exposed to Eicosanoid Biosynthesis Inhibitors and Serratia marcescens (Eubacteriales: Enterobacteriaceae) , 2001 .

[90]  J. O'callaghan,et al.  Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. , 2002, Microbiology.

[91]  T. Schultz,et al.  Structural Characterization of Brown-rotted Lignin , 1990 .

[92]  J. Bauch,et al.  Lignification during Heartwood Formation: Comparative Study of Rays and Bordered Pit Membranes in Coniferous Woods , 2009 .

[93]  A. Hüttermann,et al.  Room-Temperature Curing Adhesives Based on Lignin and Phenoloxidases , 1989 .

[94]  A. Hüttermann,et al.  Methods for the Evaluation of Lignin Properties Suitable for Conversion , 1989 .

[95]  A. Gutiérrez,et al.  The biotechnological control of pitch in paper pulp manufacturing. , 2001, Trends in biotechnology.

[96]  G. Gadd Interactions of fungip with toxic metals , 1993 .

[97]  A. Gutiérrez,et al.  Biodegradability of Extractives in Sapwood and Heartwood from Scots Pine by Sapstain and White-Rot Fungi , 1999 .

[98]  R. Meyer Effect of enzyme treatment on bordered-pit ultrastructure, permeability, and toughness of the sapwood of three western conifers , 1974 .

[99]  C. Felby,et al.  Enhanced Auto Adhesion of Wood Fibers Using Phenol Oxidases , 1997 .

[100]  David G. Humphrey,et al.  THE CHEMISTRY OF CHROMATED COPPER ARSENATE WOOD PRESERVATIVES , 2002 .

[101]  U. Kües,et al.  Fruiting body production in basidiomycetes , 2000, Applied Microbiology and Biotechnology.

[102]  B. Pettersson,et al.  Production , purification and partial characterization of 1,4-beta-glucosidase enzymes from Sporotrichum pulverulentum. , 1978, European journal of biochemistry.

[103]  C. Hackett,et al.  Production of Volatile Organic Compounds by Trichoderma in Media Containing Different Amino Acids and Their Effect on Selected Wood Decay Fungi , 2000 .

[104]  H. Militz The influence of pre-treatments with enzymes on the penetrability of small spruce wood specimens , 1993 .

[105]  E. D. Da Costa,et al.  Laboratory Evaluations of Wood Preservatives. III. Effectiveness of Australian Vertical Retort Creosotes Against Decay, in Relation to Phenolic Content , 1969 .

[106]  H. Kück Genetics and Biotechnology , 2004, The Mycota.

[107]  Jagjit Singh,et al.  Review : Dry Rot and Other Wood-Destroying Fungi: Their Occurrence, Biology, Pathology and Control , 1999 .

[108]  J. K. Grace,et al.  Prospects for the biological control of subterranean termites (Isoptera: rhinotermitidae), with special reference to Coptotermes formosanus. , 2000, Bulletin of entomological research.

[109]  Carol A. Clausen,et al.  Bacterial associations with decaying wood: a review , 1996 .

[110]  A. Hüttermann,et al.  Biotechnological production of wood composites. , 1998 .

[111]  H. Staines,et al.  Yeast and Bacteria as Biological Control Agents Against Fungal Discolouration of Pinus sylvestris Blocks in Laboratory-Based Tests and the Role of Antifungal Volatiles , 2000 .

[112]  H. Nimz DAS LIGNIN DER BUCHE - ENTWURF EINES KONSTITUTIONSSCHEMAS , 1974 .

[113]  M. Galbe,et al.  A review of the production of ethanol from softwood , 2002, Applied Microbiology and Biotechnology.

[114]  H. Nohrstedt,et al.  Effects of Stump-treatment Substances for Root-rot Control on Ground Vegetation and Soil Properties in a Picea abies forest in Sweden , 2000 .

[115]  Carl E. Cerniglia,et al.  Biodegradation of polycyclic aromatic hydrocarbons , 1992, Biodegradation.

[116]  T. Highley,et al.  Biotechnology in the study of brown- and white-rot decay. , 1998 .

[117]  W. Osbrink,et al.  Transfer of entomopathogenic fungi among formosan subterranean termites and subsequent mortality , 2002 .

[118]  Thomas M. Maloney,et al.  Modern Particleboard & Dry Process Fiberboard Manufacturing , 1993 .

[119]  T. Highley,et al.  Decay Resistance of Wood Removed from Poles Biologically Treated with Trichoderma , 1991 .

[120]  R. Blanchette,et al.  The Use of Green-Stained Wood Caused by the Fungus Chlorociboria in Intarsia Masterpieces from the 15th Century , 1992 .

[121]  D. Q. Yang,et al.  Evaluation of Gliocladium roseum Against Wood-Degrading Fungi in vitro and on Major Canadian Wood Species , 1999 .

[122]  E. D. Costa Abnormal Resistance of Poria vaillantii (D.C. ex Fr.) Cke. Strains to Copper–Chrome–Arsenate Wood Preservatives , 1959, Nature.

[123]  R. Naidu,et al.  Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. , 2000 .

[124]  A. Majcherczyk,et al.  Bioremediation of wood treated with preservatives using white-rot fungi. , 1998 .

[125]  G. Gadd,et al.  Influence of Fungi on the Environmental Mobility of Metals and Metalloids , 2000 .

[126]  F. Arnold,et al.  Functional Expression of a Fungal Laccase in Saccharomyces cerevisiae by Directed Evolution , 2003, Applied and Environmental Microbiology.

[127]  L. Kredics,et al.  Production of bacteriolytic enzymes by mycoparasitic Trichoderma strains , 2002 .

[128]  O. Schmidt Holz- und Baumpilze , 1994 .

[129]  K. Eriksson,et al.  Redox reactions in lignin degradation: interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase , 1990 .

[130]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[131]  R. Blanchette,et al.  Chemical Characterization of a Red Pigment (5,8-Dihydroxy-2,7-Dimethoxy-1,4-Naphthalenedione) Produced by Arthrographis cuboidea in Pink Stained Wood , 1995 .

[132]  Jagjit Singh Dry Rot and Other Wood-Destroying Fungi: Their Occurrence, Biology, Pathology and Control , 1999, Indoor and Built Environment.

[133]  Carol A. Clausen,et al.  Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood , 2001 .

[134]  J. Zeikus,et al.  Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation , 1978, Journal of bacteriology.

[135]  S. Silver Bacterial resistances to toxic metal ions--a review. , 1996, Gene.

[136]  M. Nakata,et al.  Absolute configuration and tautomeric structure of xylindein, a blue-green pigment of Chlorociboria species. , 2000, Phytochemistry.

[137]  T. Kirk Effects of a Brown-Rot Fungus, Lenzites trabea, on Lignin in Spruce Wood , 1975 .

[138]  C. Evans Enzymes of Lignin Degradation , 1991 .

[139]  G. Gadd Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. , 2000, Current opinion in biotechnology.

[140]  F. Scholz,et al.  Über die Entwicklung und stoffliche Zusammensetzung der Hoftüpfelmembranen von Längstracheiden in Coniferen , 1968 .

[141]  T. Kirk,et al.  CHAPTER 21 – Lignin Biodegradation: The Microorganisms Involved and the Physiology and Biochemistry of Degradation by White-Rot Fungi , 1985 .

[142]  A. Hüttermann,et al.  Properties of fibre boards obtained by activation of the middle lamella lignin of wood fibres with peroxidase and H2O2 before conventional pressing , 1998 .

[143]  K. Tsunoda,et al.  Fungal Detoxification of Organoiodine Wood Preservatives. Part 1. Decomposition of the Chemicals in Shake Cultures of Wood-Decaying Fungi , 1992 .

[144]  W. Liese,et al.  Untersuchungen über einige Eigenschaften von Fichtenholz nach dreijähriger Wasserlagerung , 2009 .

[145]  C. Breuil,et al.  The use of the green fluorescent protein as a biomarker for sapstain fungi , 2002 .

[146]  B. Mannervik,et al.  CELLOBIOSE, QUINONE OXIDOREDUCTASE A NEW WOOD-DEGRADING ENZYME FROM WHITE-ROT FUNGI , 1974 .

[147]  A. Hüttermann,et al.  Modification of lignin for the production of new compounded materials , 2001, Applied Microbiology and Biotechnology.

[148]  H. Staines,et al.  Assessment of the biocontrol potential of a Trichoderma viride isolate: Part II: Protection against soft rot and basidiomycete decay , 1999 .

[149]  I. Körner,et al.  Unsterile Fermentation von Hackschnitzeln – eine Holzvorbehandlungsmethode für die Faserplattenherstellung , 2001, Holz als Roh- und Werkstoff.

[150]  B. Mannervik,et al.  CELLOBIOSE, QUINONE OXIDOREDUCTASE A NEW WOOD-DEGRADING ENZYME FROM WHITE-ROT FUNGI , 1974 .

[151]  R. S. St. Leger,et al.  Construction of an improved mycoinsecticide overexpressing a toxic protease. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[152]  J. Gershenzon,et al.  Where will the wood come from? Plantation forests and the role of biotechnology. , 2002, Trends in biotechnology.