Nonlinear conjugate gradient method for identifying Young's modulus of the elasticity imaging inverse problem

Application of elasticity imaging inverse problem to identify Young's modulus in the elasticity problems in human's life is an interesting research area. In this study, we identify the modulus of elasticity for solving elasticity imaging inverse problem using a modified output least-squares method. Numerical convergence in the displacements of the direct problem for elasticity is investigated. To study the elasticity imaging inverse problem in an optimization framework, we utilize the sensitivity and adjoint problems to conceptualize a new model for computing the gradient of the minimizer. Discrete formulae in the model are then used to devise a scheme for an efficient computation gradient of the modified output least-squares objective function using the nonlinear conjugate gradient method. Numerical experiments demonstrate the effectiveness of the proposed technique.

[1]  Assad A. Oberai,et al.  INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .

[2]  Olatunji Mumini Omisore,et al.  Reconstruction of the heat transfer coefficients and heat fluxes in heat conduction problems , 2021, Math. Comput. Simul..

[3]  J. Fehrenbach,et al.  Detection of small inclusions by elastography , 2006 .

[4]  M. Doyley,et al.  Evaluation of an iterative reconstruction method for quantitative elastography , 2000 .

[5]  Mostafa Fatemi,et al.  An Inverse Problem Approach for Elasticity Imaging through Vibroacoustics , 2010, IEEE Transactions on Medical Imaging.

[6]  Elisa E Konofagou,et al.  Estimation of material elastic moduli in elastography: a local method, and an investigation of Poisson's ratio sensitivity. , 2004, Journal of biomechanics.

[7]  Xiaomao Deng,et al.  A NEW METHOD FOR SIMULTANEOUSLY RECONSTRUCTING THE SPACE-TIME DEPENDENT ROBIN COEFFICIENT AND HEAT FLUX IN A PARABOLIC SYSTEM , 2017 .

[8]  Dan G. Cacuci,et al.  Inverse Predictive Modeling of a Spent-Fuel Dissolver Model , 2016 .

[9]  Jörn Mosler,et al.  Efficient computation of the elastography inverse problem by combining variational mesh adaption and a clustering technique , 2010, Physics in medicine and biology.

[10]  Yvon Jarny,et al.  A General Optimization Method using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction , 1991 .

[11]  Habib,et al.  SEPARATION OF SCALES IN ELASTICITY IMAGING: A NUMERICAL STUDY * , 2010 .

[12]  K J Parker,et al.  Tissue response to mechanical vibrations for "sonoelasticity imaging". , 1990, Ultrasound in medicine & biology.

[13]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[14]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[15]  Joyce R. McLaughlin,et al.  Unique identifiability of elastic parameters from time-dependent interior displacement measurement , 2004 .

[16]  Hyochoong Bang,et al.  The Finite Element Method Using MATLAB , 1996 .

[17]  Mark S. Gockenbach,et al.  Identification of Lamé parameters in linear elasticity: a fixed point approach , 2005 .

[18]  Joyce R. McLaughlin,et al.  Recovery of the Lamé parameter μ in biological tissues , 2003 .

[19]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[20]  Andrei Constantinescu,et al.  On the identification of elastic moduli from displacement-force boundary measurements , 1995 .

[21]  Prediction of multi-parameters in the inverse heat conduction problems , 2020 .

[22]  Talaat Abdelhamid,et al.  Simultaneous identification of the spatio-temporal dependent heat transfer coefficient and spatially dependent heat flux using an MCGM in a parabolic system , 2018, J. Comput. Appl. Math..

[23]  Vincent Gibiat,et al.  Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection , 2005 .

[24]  O. M. Alifanov,et al.  Solution of an inverse problem of heat conduction by iteration methods , 1974 .

[25]  K. R. Raghavan,et al.  Forward and inverse problems in elasticity imaging of soft tissues , 1994 .

[26]  Danny Smyl,et al.  OpenQSEI: A MATLAB package for quasi static elasticity imaging , 2019, SoftwareX.

[27]  Akhtar A. Khan,et al.  First-order and second-order adjoint methods for parameter identification problems with an application to the elasticity imaging inverse problem , 2017 .

[28]  Danny Smyl,et al.  Coupled digital image correlation and quasi-static elasticity imaging of inhomogeneous orthotropic composite structures , 2018, Inverse Problems.

[29]  Guillermo Rus-Carlborg,et al.  A New Convex Inversion Framework for Parameter Identification in Saddle Point Problems with an Application to the Elasticity Imaging Inverse Problem of Predicting Tumor Location , 2014, SIAM J. Appl. Math..

[30]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[31]  Carlos Lozano,et al.  Discrete surprises in the computation of sensitivities from boundary integrals in the continuous adjoint approach to inviscid aerodynamic shape optimization , 2012 .

[32]  O. Alifanov Inverse heat transfer problems , 1994 .

[33]  B. Jadamba,et al.  On the inverse problem of identifying Lamé coefficients in linear elasticity , 2008, Comput. Math. Appl..

[34]  Daijun Jiang,et al.  Simultaneous reconstruction of the time-dependent Robin coefficient and heat flux in heat conduction problems , 2018 .

[35]  A. Oberai,et al.  Recovering vector displacement estimates in quasistatic elastography using sparse relaxation of the momentum equation , 2015, Inverse problems in science and engineering.

[36]  Damián R. Fernández,et al.  Adjoint method for a tumor growth PDE-constrained optimization problem , 2012, Comput. Math. Appl..

[37]  Dan G. Cacuci,et al.  Inverse Predictive Modeling of Radiation Transport Through Optically Thick Media in the Presence of Counting Uncertainties , 2017 .