Well-Posed Bayesian Inverse Problems: Priors with Exponential Tails

We consider the well-posedness of Bayesian inverse problems when the prior measure has exponential tails. In particular, we consider the class of convex (log-concave) probability measures which include the Gaussian and Besov measures as well as certain classes of hierarchical priors. We identify appropriate conditions on the likelihood distribution and the prior measure which guarantee existence, uniqueness and stability of the posterior measure with respect to perturbations of the data. We also consider consistent approximations of the posterior such as discretization by projection. Finally, we present a general recipe for construction of convex priors on Banach spaces which will be of interest in practical applications where one often works with spaces such as $L^2$ or the continuous functions.

[1]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[2]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[3]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[4]  Andrew M. Stuart,et al.  Posterior consistency for Gaussian process approximations of Bayesian posterior distributions , 2016, Math. Comput..

[5]  John M. Stockie,et al.  An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources , 2009, 0908.1589.

[6]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[7]  Well-posed Bayesian inverse problems and heavy-tailed stable Banach space priors , 2016 .

[8]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[9]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[10]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[11]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[12]  G. Folland Introduction to Partial Differential Equations , 1976 .

[13]  M. Burger,et al.  Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators , 2014, 1402.5297.

[14]  T. J. Sullivan,et al.  Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors , 2016, 1605.05898.

[15]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[16]  Andrew M. Stuart,et al.  Analysis of the Gibbs Sampler for Hierarchical Inverse Problems , 2013, SIAM/ASA J. Uncertain. Quantification.

[17]  J. Stockie,et al.  Bayesian estimation of airborne fugitive emissions using a Gaussian plume model , 2016, 1602.09053.

[18]  C. Borell Convex measures on locally convex spaces , 1974 .

[19]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[20]  Bamdad Hosseini,et al.  Dispersion of Pollutants in the Atmosphere: A Numerical Study , 2013 .

[21]  Johnathan M. Bardsley,et al.  Hierarchical regularization for edge-preserving reconstruction of PET images , 2010 .

[22]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[23]  Vladimir I. Bogachev,et al.  Differentiable measures and the Malliavin calculus , 2010 .

[24]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[25]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[26]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[27]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[28]  M. Bagnoli,et al.  Log-concave probability and its applications , 2004 .

[29]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[30]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[31]  V. Kolehmainen,et al.  Sparsity-promoting Bayesian inversion , 2012 .

[32]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[33]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[34]  Martin Burger,et al.  Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems , 2014, 1412.5816.

[35]  Marco A. Iglesias,et al.  Well-posed Bayesian geometric inverse problems arising in subsurface flow , 2014, 1401.5571.