The suppression of solidification cracking of Al welds by regulating Zn/Mg ratio

[1]  N. X. Ca,et al.  The crack healing effect of scandium in aluminum alloys during laser additive manufacturing , 2020 .

[2]  J. Scully,et al.  The effect of electrode potential on stress corrosion cracking in highly sensitized Al–Mg alloys , 2019, Materials Science and Engineering: A.

[3]  Zhiyi Liu,et al.  Effects of small Er addition on the microstructural evolution and strength properties of an Al–Cu–Mg–Ag alloy aged at 200°C , 2019, Materials Science and Engineering: A.

[4]  L. Zhuang,et al.  Solute clustering and precipitation of Al-5.1Mg-0.15Cu-xZn alloy , 2019, Materials Science and Engineering: A.

[5]  M. Sheikhi,et al.  Solidification cracking susceptibility in pulsed laser welding of Al–Mg alloys , 2019, Materialia.

[6]  L. Zhuang,et al.  Strengthening mechanism of age-hardenable Al–xMg–3Zn alloys , 2019, Materials Science and Technology.

[7]  A. Taheri,et al.  Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective , 2019, Journal of Alloys and Compounds.

[8]  G. Bi,et al.  Influence of pulse energy density in micro laser weld of crack sensitive Al alloy sheets , 2019, Journal of Manufacturing Processes.

[9]  J. Lewandowski,et al.  Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys , 2018, Corrosion Science.

[10]  S. Kou,et al.  A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction , 2018 .

[11]  Yi-zhou Zhou,et al.  Effects of Ag addition on the microstructures and properties of Al–Mg–Si–Cu alloys , 2018, International Journal of Minerals, Metallurgy, and Materials.

[12]  L. Zhuang,et al.  Precipitation hardening behavior and microstructure evolution of Al–5.1 Mg–0.15Cu alloy with 3.0Zn (wt%) addition , 2018, Journal of Materials Science.

[13]  Zhanyong Zhao,et al.  A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates , 2017 .

[14]  S. Kou,et al.  Evidence of back diffusion reducing cracking during solidification , 2017 .

[15]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[16]  Shi Li-kai Hot-cracking susceptibility of(Sc,Zr,Er)-microalloyed Al-5Mg filler metals , 2010 .

[17]  G. Reddy,et al.  Key Microstructural Features Responsible for Improved Stress Corrosion Cracking Resistance and Weldability in 7xxx Series Al Alloys Containing Micro / Trace Alloying Additions , 2006 .

[18]  K. Prasad Rao,et al.  Partially melted zone in Al–Mg–Si alloy gas tungsten arc welds: effect of techniques and prior thermal temper , 2005 .

[19]  G. Reddy,et al.  Influence of Trace Addition of Ag on the Weldability of Al-Zn-Mg-Cu-Zr Base 7010 Alloy , 2002 .

[20]  Y. Zhou,et al.  Reversing effect of electropulsing on damage of 1045 steel , 2000 .

[21]  G. Ram,et al.  Use of inoculants to refine weld solidification structure and improve weldability in type 2090 AlLi alloy , 2000 .

[22]  A. Marder,et al.  Modelling mushy zones in welds of multicomponent alloys : implications for solidification cracking , 1999 .

[23]  C. V. Robino,et al.  Solidification of Nb-bearing superalloys: Part I. Reaction sequences , 1998 .

[24]  S. Kou,et al.  Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy , 1985 .