Nonlinear chiral refrigerators

We investigate a mesoscopic refrigerator based on chiral quantum Hall edge channels. We discuss a three-terminal cooling device in which charge transport occurs between a pair of voltage-biased terminals only. The third terminal, which is to be cooled, is set as a voltage probe with vanishing particle flux. This largely prevents the generation of direct Joule heating which ensures a high coefficient of performance. Cooling operation is based on energy-dependent quantum transmissions. The latter are implemented with the aid of two tunable scattering resonances (quantum dots). To find the optimal performance point and the largest temperature difference created with our refrigerator, it is crucial to address the nonlinear regime of transport, accounting for electron-electron interaction effects. Our numerical simulations show that the maximal cooling power can be tuned with the quantum dot couplings and energy levels. Further, we provide analytical expressions within a weakly nonlinear scattering-matrix formalism which allow us to discuss the conditions for optimal cooling in terms of generalized thermopowers. Our results are important for the assessment of chiral conductors as promising candidates for efficient quantum refrigerators with low dissipation.

[1]  T. Fujisawa,et al.  Spectroscopic study on hot-electron transport in a quantum Hall edge channel , 2019, Physical Review B.

[2]  M. Governale,et al.  Nonlocal thermoelectricity in a Cooper-pair splitter , 2018, Physical Review B.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  E. Fradkin,et al.  Helical spin thermoelectrics controlled by a side-coupled magnetic quantum dot in the quantum spin Hall state , 2018, Physical Review B.

[5]  A. Yeyati,et al.  Cooling by Cooper pair splitting , 2018, Physical Review B.

[6]  Jian-Hua Jiang,et al.  Nonlinear effects for three-terminal heat engine and refrigerator , 2018, Scientific Reports.

[7]  Arjun Mani,et al.  Helical thermoelectrics and refrigeration. , 2017, Physical review. E.

[8]  C. Thelander,et al.  A quantum-dot heat engine operating close to the thermodynamic efficiency limits , 2017, Nature Nanotechnology.

[9]  Rafael S'anchez,et al.  Correlation-induced refrigeration with superconducting single-electron transistors , 2017, 1710.02209.

[10]  Giuliano Benenti,et al.  Fundamental aspects of steady-state conversion of heat to work at the nanoscale , 2016, 1608.05595.

[11]  R. López,et al.  Nonlinear phenomena in quantum thermoelectrics and heat , 2016, 1604.00855.

[12]  G. Michałek,et al.  Local and nonlocal thermopower in three-terminal nanostructures , 2016, 1602.04686.

[13]  Rafael Sánchez,et al.  Three-terminal energy harvester with coupled quantum dots. , 2015, Nature nanotechnology.

[14]  L. Vannucci,et al.  Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions , 2015, 1506.06547.

[15]  F Hartmann,et al.  Voltage fluctuation to current converter with Coulomb-coupled quantum dots. , 2015, Physical review letters.

[16]  D. A. Ritchie,et al.  Harvesting dissipated energy with a mesoscopic ratchet , 2015, Nature Communications.

[17]  A. Jordan,et al.  Heat diode and engine based on quantum Hall edge states , 2015, 1503.02926.

[18]  Udo Seifert,et al.  Bound on thermoelectric power in a magnetic field within linear response. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  A. Jordan,et al.  Chiral thermoelectrics with quantum Hall edge states. , 2014, Physical review letters.

[20]  A. Aharony,et al.  Enhanced performance of joint cooling and energy production , 2014, 1410.4880.

[21]  Rafael Sánchez,et al.  Thermoelectric energy harvesting with quantum dots , 2014, Nanotechnology.

[22]  J. Koski,et al.  Experimental realization of a Coulomb blockade refrigerator , 2014, 1409.5637.

[23]  A. Jordan,et al.  Quantum Nernst engines , 2014, 1406.5023.

[24]  Minchul Lee,et al.  Nonlinear spin-thermoelectric transport in two-dimensional topological insulators , 2014, 1406.3187.

[25]  J. Koski,et al.  Refrigerator based on the Coulomb barrier for single-electron tunneling , 2014 .

[26]  P. Nalbach,et al.  Cooling a magnetic nanoisland by spin-polarized currents. , 2014, Physical review letters.

[27]  L. Correa,et al.  Multistage quantum absorption heat pumps. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[29]  H. Linke,et al.  Experimental verification of reciprocity relations in quantum thermoelectric transport , 2013, 1306.3694.

[30]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. Henke,et al.  Diffusion thermopower of a serial double quantum dot , 2013 .

[32]  Markus Buttiker,et al.  Powerful energy harvester based on resonant-tunneling quantum wells , 2013, 1309.7907.

[33]  Udo Seifert,et al.  Multi-terminal thermoelectric transport in a magnetic field: bounds on Onsager coefficients and efficiency , 2013, 1308.2179.

[34]  H. Linke,et al.  Nonlinear thermovoltage and thermocurrent in quantum dots , 2013, 1307.0617.

[35]  E. Hwang,et al.  Thermoelectric detection of chiral heat transport in graphene in the quantum Hall regime. , 2013, Physical review letters.

[36]  R. López,et al.  Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law , 2013, 1302.5557.

[37]  Markus Buttiker,et al.  Powerful and efficient energy harvester with resonant-tunneling quantum dots , 2013, 1302.3366.

[38]  Udo Seifert,et al.  Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. , 2013, Physical review letters.

[39]  P. Jacquod,et al.  Scattering theory of nonlinear thermoelectricity in quantum coherent conductors , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Davide Venturelli,et al.  Minimal self-contained quantum refrigeration machine based on four quantum dots. , 2012, Physical review letters.

[41]  David Sánchez,et al.  Scattering theory of nonlinear thermoelectric transport. , 2012, Physical review letters.

[42]  Robert S. Whitney,et al.  Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling , 2012, 1208.6130.

[43]  David Sánchez,et al.  Fluctuation relations for spintronics. , 2012, Physical review letters.

[44]  C. Van den Broeck,et al.  Cooling by heating: refrigeration powered by photons. , 2012, Physical review letters.

[45]  J. Pekola,et al.  Micrometre-scale refrigerators , 2012, Reports on progress in physics. Physical Society.

[46]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[47]  H. Linke,et al.  Thermally driven ballistic rectifier , 2011, 1107.3179.

[48]  Paul Skrzypczyk,et al.  Virtual qubits, virtual temperatures, and the foundations of thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  David Sánchez,et al.  Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes , 2011, 1107.3576.

[50]  T. Prosen,et al.  Thermopower with broken time-reversal symmetry , 2011, 1107.1431.

[51]  R. Naaman,et al.  Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA , 2011, Science.

[52]  Markus Buttiker,et al.  Optimal energy quanta to current conversion , 2010, 1008.3528.

[53]  F. Beltram,et al.  Probing the local temperature of a two-dimensional electron gas microdomain with a quantum dot: Measurement of electron-phonon interaction , 2010, 1007.0172.

[54]  H. Linke,et al.  Thermoelectric efficiency at maximum power in low-dimensional systems , 2010, 1010.1375.

[55]  D. Mailly,et al.  Tuning energy relaxation along quantum Hall channels. , 2010, Physical review letters.

[56]  D. Mailly,et al.  Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime , 2009, 0910.2683.

[57]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[58]  D. Ritchie,et al.  Electronic refrigeration of a two-dimensional electron gas. , 2009, Physical review letters.

[59]  J. Pekola,et al.  Electronic refrigeration at the quantum limit. , 2009, Physical review letters.

[60]  J. Reno,et al.  Observation of chiral heat transport in the quantum Hall regime. , 2008, Physical review letters.

[61]  L. Martín-Moreno,et al.  Heat production and energy balance in nanoscale engines driven by time-dependent fields , 2006, cond-mat/0612059.

[62]  P. Hānggi,et al.  Nonadiabatic electron heat pump , 2006, cond-mat/0610155.

[63]  H Germany,et al.  Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots , 2006, cond-mat/0608193.

[64]  Arttu Luukanen,et al.  Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications , 2005, cond-mat/0508093.

[65]  M. Buttiker,et al.  Chirality in Coulomb-blockaded quantum dots , 2005, cond-mat/0510316.

[66]  L. Molenkamp,et al.  Thermopower of a Kondo spin-correlated quantum dot. , 2004, Physical review letters.

[67]  D. Ritchie,et al.  Thermoelectric signature of the excitation spectrum of a quantum dot , 1997 .

[68]  J. Pekola,et al.  Efficient Peltier refrigeration by a pair of normal metal/insulator/superconductor junctions , 1995, cond-mat/9511127.

[69]  Edwards,et al.  Cryogenic cooling using tunneling structures with sharp energy features. , 1995, Physical review. B, Condensed matter.

[70]  T. Eiles,et al.  Electronic Microrefrigerator Based on a Normal-Insulator-Superconductor Tunnel Junction , 1994 .

[71]  Hal Edwards,et al.  A quantum‐dot refrigerator , 1993 .

[72]  D. Ritchie,et al.  Observation of Coulomb blockade oscillations in the thermopower of a quantum dot , 1993 .

[73]  C. Beenakker,et al.  Coulomb-Blockade Oscillations in the Thermopower of a Quantum Dot. , 1993 .