Arrhythmia phenotype in mouse models of human long QT

[1]  A. Moss,et al.  The Long-QT Syndrome , 1992 .

[2]  J. Nerbonne,et al.  Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. , 2008, Journal of molecular and cellular cardiology.

[3]  M. Killeen,et al.  Repolarization gradients and arrhythmogenicity in the murine heart , 2007, The Journal of physiology.

[4]  G. Salama,et al.  Autonomic Nerve Stimulation Reverses Ventricular Repolarization Sequence in Rabbit Hearts , 2007, Circulation research.

[5]  J. Nerbonne,et al.  Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT , 2007, The Journal of physiology.

[6]  Guy Salama,et al.  Mouse models of long QT syndrome , 2007, The Journal of physiology.

[7]  W. Colledge,et al.  Effects of L‐type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3 , 2007, The Journal of physiology.

[8]  A. Grace,et al.  Mechanisms of ventricular arrhythmogenesis in mice following targeted disruption of KCNE1 modelling long QT syndrome 5 , 2007, The Journal of physiology.

[9]  László Virág,et al.  Restricting Excessive Cardiac Action Potential and QT Prolongation: A Vital Role for IKs in Human Ventricular Muscle , 2005, Circulation.

[10]  Gergely Szabo,et al.  Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. , 2005, Cardiovascular research.

[11]  B. Surawicz Contributions of cellular electrophysiology to the understanding of the electrocardiogram , 1987, Experientia.

[12]  D. Escande,et al.  Expression of human ERG K+ channels in the mouse heart exerts anti-arrhythmic activity. , 2005, Cardiovascular research.

[13]  J. Brouillette,et al.  Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. , 2005, Cardiovascular research.

[14]  J. Nerbonne,et al.  Heterogeneous expression of repolarizing, voltage‐gated K+ currents in adult mouse ventricles , 2004, The Journal of physiology.

[15]  Guy Salama,et al.  Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts. , 2004, American journal of physiology. Heart and circulatory physiology.

[16]  Stanley Nattel,et al.  Single‐channel recordings of a rapid delayed rectifier current in adult mouse ventricular myocytes: basic properties and effects of divalent cations , 2004, The Journal of physiology.

[17]  A. Grace,et al.  Electrogram prolongation and nifedipine‐suppressible ventricular arrhythmias in mice following targeted disruption of KCNE1 , 2003, The Journal of physiology.

[18]  H. Duff,et al.  Selective Knockout of Mouse ERG1 B Potassium Channel Eliminates IKr in Adult Ventricular Myocytes and Elicits Episodes of Abrupt Sinus Bradycardia , 2003, Molecular and Cellular Biology.

[19]  V. Shusterman,et al.  Calcium-dependent arrhythmias in transgenic mice with heart failure. , 2003, American journal of physiology. Heart and circulatory physiology.

[20]  Guy Salama,et al.  Cytosolic Ca2+ triggers early afterdepolarizations and torsade de pointes in rabbit hearts with type 2 long QT syndrome , 2002, The Journal of physiology.

[21]  Guy Salama,et al.  Life Span of Ventricular Fibrillation Frequencies , 2002, Circulation research.

[22]  G. Salama,et al.  Mice Display Sex Differences in Halothane-Induced Polymorphic Ventricular Tachycardia , 2002, Circulation.

[23]  Junko Kurokawa,et al.  Requirement of a Macromolecular Signaling Complex for β Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium Channel , 2002, Science.

[24]  J. Ross,et al.  A Defect in the Kv Channel-Interacting Protein 2 (KChIP2) Gene Leads to a Complete Loss of I to and Confers Susceptibility to Ventricular Tachycardia , 2001, Cell.

[25]  C. Fiset,et al.  Gender-Based Differences in Cardiac Repolarization in Mouse Ventricle , 2001, Circulation research.

[26]  S. Nattel,et al.  Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. , 2001, American journal of physiology. Heart and circulatory physiology.

[27]  M. Franz,et al.  Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange– Nielsen Syndrome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  A. Feinberg,et al.  Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. , 2000, The Journal of clinical investigation.

[29]  Guy Salama,et al.  Simultaneous maps of optical action potentials and calcium transients in guinea‐pig hearts: mechanisms underlying concordant alternans , 2000, The Journal of physiology.

[30]  J. Nerbonne,et al.  Functional consequences of elimination of i(to,f) and i(to,s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. , 2000, Circulation research.

[31]  J. Nerbonne Molecular basis of functional voltage‐gated K+ channel diversity in the mammalian myocardium , 2000, The Journal of physiology.

[32]  G. Salama,et al.  Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. , 2000, Circulation research.

[33]  J. Nerbonne,et al.  Expression of Distinct ERG Proteins in Rat, Mouse, and Human Heart , 2000, The Journal of Biological Chemistry.

[34]  Weinong Guo,et al.  Four Kinetically Distinct Depolarization-activated K+ Currents in Adult Mouse Ventricular Myocytes , 1999, The Journal of general physiology.

[35]  D. Roden,et al.  Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. , 1999, Circulation research.

[36]  C Antzelevitch,et al.  Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. , 1998, Circulation.

[37]  W. Allan,et al.  Long QT Syndrome , 1998, Pediatrics.

[38]  B. London,et al.  Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. , 1998, Circulation research.

[39]  T. Colatsky,et al.  Inhibition of cardiac delayed rectifier K+ current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. , 1998, Circulation research.

[40]  J. Nerbonne,et al.  Functional knockout of the transient outward current, long-QT syndrome, and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit. , 1998, Circulation research.

[41]  M. Lazdunski,et al.  Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. , 1998, Circulation research.

[42]  Dao-wu Wang,et al.  The transient outward current in mice lacking the potassium channel gene Kv1.4 , 1998, The Journal of physiology.

[43]  G. Mitchell,et al.  Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M J Ackerman,et al.  The long QT syndrome: ion channel diseases of the heart. , 1998, Mayo Clinic proceedings.

[45]  M Restivo,et al.  Electrophysiological mechanism of the characteristic electrocardiographic morphology of torsade de pointes tachyarrhythmias in the long-QT syndrome: detailed analysis of ventricular tridimensional activation patterns. , 1997, Circulation.

[46]  N. Copeland,et al.  Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. , 1997, Circulation research.

[47]  S. Heinemann,et al.  Inner Ear Defects Induced by Null Mutationof the isk Gene , 1996, Neuron.

[48]  Jacques Barhanin,et al.  KvLQT1 and IsK (minK) proteins associate to form the IKS cardiac potassium current , 1996, Nature.

[49]  G. Salama,et al.  Activation and Repolarization Patterns are Governed by Different Structural Characteristics of Ventricular Myocardium: , 1996, Journal of cardiovascular electrophysiology.

[50]  J. Nerbonne,et al.  Myocardial potassium channels: electrophysiological and molecular diversity. , 1996, Annual review of physiology.

[51]  G. Salama,et al.  Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. , 1995, Circulation research.

[52]  L. Hondeghem Development of Class III Antiarrhythmic Agents , 1992, Journal of cardiovascular pharmacology.

[53]  G. Gintant,et al.  Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. , 1991, Circulation research.

[54]  N. El-Sherif,et al.  Reentrant ventricular arrhythmias in the late myocardial infarction period: mechanism by which a short-long-short cardiac sequence facilitates the induction of reentry. , 1991, Circulation.

[55]  J. Jalife,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1990 .

[56]  D Tzivoni,et al.  Torsade de pointes. , 1989, American heart journal.

[57]  B. Surawicz Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early afterdepolarizations? , 1989, Journal of the American College of Cardiology.

[58]  P. Wolf,et al.  Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. , 1989, The Journal of clinical investigation.

[59]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[60]  G. Salama,et al.  Maps of optical action potentials and NADH fluorescence in intact working hearts. , 1987, The American journal of physiology.

[61]  M. Allessie,et al.  Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. , 1982, The American journal of cardiology.

[62]  F Dessertenne,et al.  [Ventricular tachycardia with 2 variable opposing foci]. , 1966, Archives des maladies du coeur et des vaisseaux.