Multimodal Graph-Based Reranking for Web Image Search

This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integrate the learning of relevance scores, weights of modalities, and the distance metric and its scaling for each modality into a unified scheme. In this way, the effects of different modalities can be adaptively modulated and better reranking performance can be achieved. We conduct experiments on a large dataset that contains more than 1000 queries and 1 million images to evaluate our approach. Experimental results demonstrate that the proposed reranking approach is more robust than using each individual modality, and it also performs better than many existing methods.

[1]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[2]  Shumeet Baluja,et al.  VisualRank: Applying PageRank to Large-Scale Image Search , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Chong-Wah Ngo,et al.  Co-reranking by mutual reinforcement for image search , 2010, CIVR '10.

[4]  Dacheng Tao,et al.  Bregman Divergence-Based Regularization for Transfer Subspace Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[5]  Pinar Duygulu Sahin,et al.  Re-ranking of web image search results using a graph algorithm , 2008, 2008 19th International Conference on Pattern Recognition.

[6]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[7]  Tao Mei,et al.  Multigraph-Based Query-Independent Learning for Video Search , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Rong Yan,et al.  The combination limit in multimedia retrieval , 2003, MULTIMEDIA '03.

[9]  Alan Hanjalic,et al.  Supervised reranking for web image search , 2010, ACM Multimedia.

[10]  Nicu Sebe,et al.  Toward Improved Ranking Metrics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ivor W. Tsang,et al.  Improving Web Image Search by Bag-Based Reranking , 2011, IEEE Transactions on Image Processing.

[12]  Xian-Sheng Hua,et al.  Ensemble Manifold Regularization , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jingrui He,et al.  Generalized Manifold-Ranking-Based Image Retrieval , 2006, IEEE Transactions on Image Processing.

[14]  Qi Tian,et al.  Learning to judge image search results , 2011, MM '11.

[15]  Zhi-Hua Zhou,et al.  Adapting RBF Neural Networks to Multi-Instance Learning , 2006, Neural Processing Letters.

[16]  Adil Alpkocak,et al.  DEU at ImageCLEF 2009 WikipediaMM Task: Experiments with Expansion and Reranking Approaches , 2009, CLEF.

[17]  Fei Wang,et al.  Label Propagation through Linear Neighborhoods , 2006, IEEE Transactions on Knowledge and Data Engineering.

[18]  Gabriela Csurka,et al.  Trans-Media Pseudo-Relevance Feedback Methods in Multimedia Retrieval , 2008, CLEF.

[19]  Meng Wang,et al.  MSRA-MM 2.0: A Large-Scale Web Multimedia Dataset , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[20]  Xian-Sheng Hua,et al.  Active Reranking for Web Image Search , 2010, IEEE Transactions on Image Processing.

[21]  Edward Y. Chang,et al.  Optimal multimodal fusion for multimedia data analysis , 2004, MULTIMEDIA '04.

[22]  Meng Wang,et al.  Unified Video Annotation via Multigraph Learning , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Meng Wang,et al.  Semi-supervised kernel density estimation for video annotation , 2009, Comput. Vis. Image Underst..

[24]  Jingrui He,et al.  Manifold-ranking based image retrieval , 2004, MULTIMEDIA '04.

[25]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[26]  Jingdong Wang,et al.  Robust visual reranking via sparsity and ranking constraints , 2011, ACM Multimedia.

[27]  Shih-Fu Chang,et al.  Video search reranking through random walk over document-level context graph , 2007, ACM Multimedia.

[28]  Meng Wang,et al.  Adaptive Hypergraph Learning and its Application in Image Classification , 2012, IEEE Transactions on Image Processing.

[29]  Qi Tian,et al.  Less is More: Efficient 3-D Object Retrieval With Query View Selection , 2011, IEEE Transactions on Multimedia.

[30]  Kong-Wah Wan,et al.  I2R At ImageCLEF Wikipedia Retrieval 2010 , 2010, CLEF.

[31]  Harriet J. Nock,et al.  Discriminative model fusion for semantic concept detection and annotation in video , 2003, ACM Multimedia.

[32]  Meng Wang,et al.  Optimizing multimodal reranking for web image search , 2011, SIGIR '11.

[33]  Bo Geng,et al.  DAML: Domain Adaptation Metric Learning , 2011, IEEE Transactions on Image Processing.

[34]  Meng Wang,et al.  Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation , 2009, IEEE Transactions on Multimedia.

[35]  Tao Mei,et al.  CrowdReranking: exploring multiple search engines for visual search reranking , 2009, SIGIR.

[36]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[37]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.

[38]  Vidit Jain,et al.  Learning to re-rank: query-dependent image re-ranking using click data , 2011, WWW.

[39]  Dacheng Tao,et al.  Visual Reranking: From Objectives to Strategies , 2011, IEEE MultiMedia.

[40]  Frédéric Jurie,et al.  Improving web image search results using query-relative classifiers , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  Meng Wang,et al.  Manifold-ranking based video concept detection on large database and feature pool , 2006, MM '06.

[42]  Xinhua Zhang,et al.  Hyperparameter Learning for Graph Based Semi-supervised Learning Algorithms , 2006, NIPS.

[43]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[44]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[45]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[46]  Tao Mei,et al.  Optimizing Visual Search Reranking via Pairwise Learning , 2011, IEEE Transactions on Multimedia.

[47]  Wei-Ying Ma,et al.  Learning an image manifold for retrieval , 2004, MULTIMEDIA '04.

[48]  Shih-Fu Chang,et al.  A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.