Quantum quenches in fractonic field theories

We study out-of-equilibrium dynamics caused by global quantum quenches in fractonic scalar field theories. We consider several types of quenches, in particular, the mass quench in theories with different types of discrete rotational symmetries ($\mathbb{Z}_4$ and $\mathbb{Z}_8$), as well as an instantaneous quench via the transition between them. We also investigate fractonic boundary quenches, where the initial state is prepared on a finite-width slab in Euclidean time. We find that perturbing a fractonic system in finite volume especially highlights the restricted mobility via the formation and subsequent evolution of specific $\mathbb{Z}_4$-symmetric spatial structures. We discuss a generalization to $\mathbb{Z}_n$-symmetric field theories, and introduce a proper regularization, which allows us to explicitly deal with divergences inherent to fractonic field theories.

[1]  K. Sengupta,et al.  Non-equilibrium dynamics of bosons with dipole symmetry: A large $N$ Keldysh approach , 2023, 2305.13372.

[2]  R. Nandkishore,et al.  Multipole groups and fracton phenomena on arbitrary crystalline lattices , 2023, SciPost Physics.

[3]  D. Ageev,et al.  From locality to irregularity: introducing local quenches in massive scalar field theory , 2022, Journal of High Energy Physics.

[4]  A. Karch,et al.  Interacting fractons in 2+1-dimensional quantum field theory , 2021, Journal of High Energy Physics.

[5]  M. Mozaffar,et al.  Time scaling of entanglement in integrable scale-invariant theories , 2021, Physical Review Research.

[6]  N. Seiberg,et al.  Exotic symmetries, duality, and fractons in 2+1-dimensional quantum field theory , 2020 .

[7]  N. Seiberg Field theories with a vector global symmetry , 2019, SciPost Physics.

[8]  M. Mozaffar,et al.  Universal scaling in fast quenches near Lifshitz-like fixed points , 2019, Physics Letters B.

[9]  L. Radzihovsky,et al.  Fractons from Vector Gauge Theory. , 2019, Physical review letters.

[10]  A. Gromov Towards Classification of Fracton Phases: The Multipole Algebra , 2018, Physical Review X.

[11]  M. Mozaffar,et al.  Entanglement evolution in Lifshitz-type scalar theories , 2018, Journal of High Energy Physics.

[12]  M. Pretko The fracton gauge principle , 2018, Physical Review B.

[13]  I. Aref’eva,et al.  Waking and scrambling in holographic heating up , 2017, 1701.07280.

[14]  Jordan S. Cotler,et al.  Entanglement growth after a global quench in free scalar field theory , 2016, 1609.00872.

[15]  J. Cardy,et al.  Quantum quenches in 1  +  1 dimensional conformal field theories , 2016, 1603.02889.

[16]  R. Myers,et al.  Quantum quenches in free field theory: universal scaling at any rate , 2016, 1602.08547.

[17]  R. Myers,et al.  Smooth and fast versus instantaneous quenches in quantum field theory , 2015, 1505.05224.

[18]  Jeongwan Haah,et al.  A New Kind of Topological Quantum Order: A Dimensional Hierarchy of Quasiparticles Built from Stationary Excitations , 2015, 1505.02576.

[19]  R. Myers,et al.  Universality in fast quantum quenches , 2014, Journal of High Energy Physics.

[20]  T. Takayanagi,et al.  Quantum entanglement of localized excited states at finite temperature , 2014, Journal of High Energy Physics.

[21]  Thomas Hartman,et al.  Holographic entanglement entropy from 2d CFT: heavy states and local quenches , 2014, 1410.1392.

[22]  M. Rajabpour,et al.  Quantum quench in long-range field theories , 2014, 1409.6558.

[23]  T. Takayanagi,et al.  Quantum dimension as entanglement entropy in two dimensional conformal field theories , 2014 .

[24]  T. Takayanagi,et al.  Quantum entanglement of local operators in conformal field theories. , 2014, Physical review letters.

[25]  R. Myers,et al.  Universality of abrupt holographic quenches. , 2013, Physical review letters.

[26]  V. Balasubramanian,et al.  Holographic thermalization , 2011, Theoretical and Mathematical Physics.

[27]  B. Müller,et al.  Thermalization of strongly coupled field theories. , 2010, Physical review letters.

[28]  J. Cardy,et al.  Quantum quench in interacting field theory: A self-consistent approximation , 2010, 1002.0167.

[29]  J. Cardy,et al.  Quantum quench from a thermal initial state , 2009, 0903.0895.

[30]  J. Cardy,et al.  Quantum quenches in extended systems , 2007, 0704.1880.

[31]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[32]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[33]  M. Fisher,et al.  Ring exchange, the exciton Bose liquid, and bosonization in two dimensions , 2002, cond-mat/0203171.

[34]  E. Keski-Vakkuri,et al.  Black hole formation in AdS and thermalization on the boundary , 1999, hep-th/9912209.

[35]  M. Khlopov Fractionally charged particles and quark confinement , 1981 .

[36]  Song He,et al.  Correlation functions, entanglement and chaos in the T ¯ T /J ¯ T -deformed CFTs , 2019 .

[37]  P. Millington,et al.  Correlation Functions , 2019, Graduate Texts in Physics.