SVF-Net: Learning Deformable Image Registration Using Shape Matching
暂无分享,去创建一个
Maxime Sermesant | Xavier Pennec | Tobias Heimann | Marc-Michel Rohé | Manasi Datar | T. Heimann | X. Pennec | Maxime Sermesant | Marc-Michel Rohé | M. Datar
[1] A. Khotanzad,et al. A physics-based coordinate transformation for 3-D image matching , 1997, IEEE Transactions on Medical Imaging.
[2] Thomas Brox,et al. U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.
[3] Alain Trouvé,et al. Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.
[4] Xiao Yang,et al. Fast Predictive Image Registration , 2016, LABELS/DLMIA@MICCAI.
[5] Xiaoguang Lu,et al. Automatic Segmentation of the Myocardium in Cine MR Images Using Deformable Registration , 2011, STACOM.
[6] Nicholas Ayache,et al. LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm , 2013, NeuroImage.
[7] Nicholas Ayache,et al. A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.
[8] Dorin Comaniciu,et al. Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach , 2013 .
[9] Margaret Chow,et al. Computational analysis of LDDMM for brain mapping , 2013, Front. Neurosci..
[10] Guido Gerig,et al. Morphometry of anatomical shape complexes with dense deformations and sparse parameters , 2014, NeuroImage.