TcdA1 of Photorhabdus luminescens: electrophysiological analysis of pore formation and effector binding.

[1]  Stefan Raunser,et al.  A syringe-like injection mechanism in Photorhabdus luminescens toxins , 2013, Nature.

[2]  Rosalba Rothnagel,et al.  3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity , 2011, Proceedings of the National Academy of Sciences.

[3]  H. Mannherz,et al.  Actin as target for modification by bacterial protein toxins , 2011, The FEBS journal.

[4]  R. Benz,et al.  Insecticidal Toxin Complex Proteins from Xenorhabdus nematophilus , 2011, The Journal of Biological Chemistry.

[5]  H. Mannherz,et al.  Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering , 2010, Science.

[6]  Ashley M Buckle,et al.  The MACPF/CDC family of pore-forming toxins , 2008, Cellular microbiology.

[7]  T. Fuchs,et al.  Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity , 2008, BMC Genomics.

[8]  John A. Young,et al.  Anthrax toxin: receptor binding, internalization, pore formation, and translocation. , 2007, Annual review of biochemistry.

[9]  G. Schulz,et al.  Structure and action of the binary C2 toxin from Clostridium botulinum. , 2006, Journal of molecular biology.

[10]  R. Benz,et al.  Anthrax Edema Factor, Voltage-dependent Binding to the Protective Antigen Ion Channel and Comparison to LF Binding* , 2006, Journal of Biological Chemistry.

[11]  R. Benz,et al.  Anthrax toxin protective antigen: inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis. , 2005, Biophysical journal.

[12]  Roland Benz,et al.  Mechanism of sugar transport through the sugar-specific LamB channel ofEscherichia coli outer membrane , 2005, The Journal of Membrane Biology.

[13]  K. Aktories,et al.  Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins , 2004, Microbiology and Molecular Biology Reviews.

[14]  G. Viero,et al.  Ion channels and bacterial infection: the case of β‐barrel pore‐forming protein toxins of Staphylococcus aureus , 2003, FEBS letters.

[15]  R. Benz,et al.  Interaction of Clostridium perfringensIota-Toxin with Lipid Bilayer Membranes , 2002, Journal of Biological Chemistry.

[16]  R. Benz,et al.  Interaction of Clostridium botulinum C2‐toxin with lipid bilayer membranes and vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  L. Abrami,et al.  Aerolysin from Aeromonas hydrophila and related toxins. , 2001, Current topics in microbiology and immunology.

[18]  R. Benz,et al.  Cellular Uptake of Clostridium botulinum C2 Toxin Requires Oligomerization and Acidification* , 2000, The Journal of Biological Chemistry.

[19]  R. ffrench-Constant,et al.  Insecticidal toxins from the bacterium Photorhabdus luminescens. , 1998, Science.

[20]  E. Stackebrandt,et al.  Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. , 1997, Annual review of microbiology.

[21]  A. SchmidS,et al.  Interaction of Clostridium botulinum C2 Toxin with , 1994 .

[22]  R. Benz,et al.  Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth. , 1993, The Journal of biological chemistry.

[23]  N. Oppenheimer,et al.  Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. , 1992, Biochemistry.

[24]  A. Finkelstein,et al.  Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis , 1990, The Journal of general physiology.

[25]  S. Narumiya,et al.  Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. , 1989, The Journal of biological chemistry.

[26]  T. Koehler,et al.  Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[27]  F. Gambale,et al.  Characterization of the channel properties of tetanus toxin in planar lipid bilayers. , 1988, Biophysical journal.

[28]  J. J. Donovan,et al.  Ion-conducting channels produced by botulinum toxin in planar lipid membranes. , 1986, Biochemistry.

[29]  J. Moss,et al.  Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. , 1985, The Journal of biological chemistry.

[30]  M. Simon,et al.  Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. , 1985, The Journal of biological chemistry.

[31]  B. Ehrlich,et al.  Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Bourne,et al.  Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. , 1984, The Journal of biological chemistry.

[33]  M. Montal,et al.  Tetanus toxin forms channels in planar lipid bilayers containing gangliosides. , 1984, Biophysical journal.

[34]  A. Finkelstein,et al.  Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. A. Mcquarrie,et al.  The effect of discrete charges on the electrical properties of membranes. II. , 1975, Journal of theoretical biology.

[36]  M. Simon,et al.  Diphtheria toxin forms transmembrane channels in planar lipid bilayers. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Benz,et al.  Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. , 1979, Biochimica et biophysica acta.

[38]  R. Benz,et al.  Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. , 1978, Biochimica et biophysica acta.

[39]  D. A. Mcquarrie,et al.  The effect of discrete charges on the electrical properties of a membrane. I. , 1975, Journal of theoretical biology.

[40]  R. H. ffrench-Constanta,et al.  Novel insecticidal toxins from nematode-symbiotic bacteria , 2022 .