MIRC closure phase studies for high precision measurements

To date, about 17 hot Jupiters have been directly detected by photometric and/or spectroscopic observations. Only 2 of them, however, are non-transiting hot Jupiters and the rest are all transiting ones. Since non-transiting hot Jupiter systems are analogs of high contrast binaries, optical/infrared long baseline interferometers can resolve them and detect the planets if highly stable and precise closure phase measurements are obtained. Thus, this is a good opportunity for optical/infrared interferometers to contribute to the field of exoplanet characterization. To reach this goal, detailed calibration studies are essential. In this paper, we report the first results of our closure phase calibration studies. Specifically, we find strong closure phase drifts that are highly correlated with target positions, i.e., altitude and azimuth angle. The correlation is stronger with altitude. Our experiments indicate that the major cause of the drifts is probably longitudinal dispersion. We are able to find a strategy with multiple approaches to reduce this effect, and are able to model the closure phase drift with a quadratic function of both altitude and azimuth. We then use this model to calibrate the drifts, and test this new calibration scheme with the high contrast binary ε Per. Although we can find a better orbital solution with this new method, we have also found difficulties to interpret the orbit of ε Per, which may stem from possible mis-calibrations or the influence of the third component in the system. More investigations are definitely necessary to address this issue and to further confirm our calibration strategy.

[1]  F. P. Schloerb,et al.  Physical Orbit for λ Virginis and a Test of Stellar Evolution Models , 2007 .

[2]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[3]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[4]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[5]  Huang Zeng,et al.  Infrared radiation from an extrasolar planet , 2005 .

[6]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[7]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[8]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009, 0901.1876.

[9]  John D. Monnier,et al.  Imaging the surface of Altair and a MIRC update , 2008, Astronomical Telescopes + Instrumentation.

[10]  Ulrich Bastian,et al.  The Hipparcos catalogue , 2009 .

[11]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[12]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[13]  C. Moutou,et al.  The secondary eclipse of CoRoT-1b , 2009 .

[14]  Heather A. Knutson,et al.  Extrasolar planets: Water on distant worlds , 2007, Nature.

[15]  Rafael Millan-Gabet,et al.  CHARA Michigan phase-tracker (CHAMP): a preliminary performance report , 2008, Astronomical Telescopes + Instrumentation.

[16]  John D. Monnier,et al.  Phases in interferometry , 2007 .

[17]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[18]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[19]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[20]  Joseph L. Hora,et al.  A ccepted forpublication in The A strophysicalJournal D etection of T herm alE m ission of X O -2b: E vidence for a W eak Tem perature Inversion , 2022 .

[21]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[22]  Rafael Millan-Gabet,et al.  The Michigan Infrared Combiner (MIRC): IR imaging with the CHARA Array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[23]  NOAO,et al.  First Resolved Images of the Eclipsing and Interacting Binary β Lyrae , 2008 .

[24]  Stephen R. Kane,et al.  The thermal emission of the exoplanets WASP-1b and WASP-2b , 2010, 1004.0836.

[25]  C. Aerts,et al.  The new orbital elements and properties of ε Persei , 2006 .

[26]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[27]  Drake Deming,et al.  Accepted for publication in the Astrophysical Journal Strong Infrared Emission from the Extrasolar Planet HD189733b , 2006 .

[28]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[29]  Joseph L. Hora,et al.  THERMAL EMISSION AND TIDAL HEATING OF THE HEAVY AND ECCENTRIC PLANET XO-3b , 2010, 1001.2319.

[30]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[31]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.

[32]  William Wilson Morgan,et al.  Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas , 1953 .

[33]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[34]  I. Snellen,et al.  Ground-based K-band detection of thermal emission from the exoplanet TrES-3b , 2009, 0901.1878.

[35]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[36]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[37]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[38]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[39]  Rafael Millan-Gabet,et al.  Michigan Infrared Combiner (MIRC): commissioning results at the CHARA Array , 2006, SPIE Astronomical Telescopes + Instrumentation.

[40]  John D. Monnier,et al.  Exoplanet studies with CHARA-MIRC , 2008, Astronomical Telescopes + Instrumentation.