Energy Harvesting Using THz Electronics

In this chapter we present a review and appraisal of energy harvesting using rectenna devices (‘rectifying antennas’) at THz and solar frequencies. The concept involves capturing the electromagnetic radiation in a nano-scale antenna and rectifying it to direct current. Rectennas may offer much higher efficiency than photovoltaics, in principle but there are considerable challenges in the engineering of such devices. In particular, the rectifier must provide a good match to the antenna at very low currents. Although high efficiency rectennas have been demonstrated at microwave frequencies, the device cannot simply be scaled to the higher frequencies of interest, due to the significant changes in materials properties and these are explained in the paper. Finally a design framework for one rectifier type is presented, namely the metal-insulator diode. This study serves to highlight the considerable challenges associated with the matching issue.

[1]  N. Melosh,et al.  Plasmonic energy collection through hot carrier extraction. , 2011, Nano letters.

[2]  Erich Schlecht,et al.  Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. , 2005, Nano letters.

[3]  Elliott R. Brown A system-level analysis of Schottky diodes for incoherent THz imaging arrays , 2003 .

[4]  K. Cheung,et al.  Picosecond photoconducting Hertzian dipoles , 1984 .

[5]  Moichiro Nagae,et al.  Response Time of Metal-Insulator-Metal Tunnel Junctions , 1972 .

[6]  S. R. Kasjoo,et al.  Room-temperature operation of a unipolar nanodiode at terahertz frequencies , 2011 .

[7]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[8]  Kai Chang,et al.  Microwave Power Transmission: Historical Milestones and System Components , 2013, Proceedings of the IEEE.

[9]  L. Reggiani,et al.  Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits , 2006 .

[10]  Gaili Wang,et al.  Terahertz harmonic generation using a planar nanoscale unipolar diode at zero bias , 2008 .

[11]  Y. Huang,et al.  Towards rectennas for solar energy harvesting , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[12]  R. Zane,et al.  Recycling ambient microwave energy with broad-band rectenna arrays , 2004, IEEE Transactions on Microwave Theory and Techniques.

[13]  T. Nagatsuma,et al.  InP-Based Planar-Antenna-Integrated Schottky-Barrier Diode for Millimeter- and Sub-Millimeter-Wave Detection , 2008 .

[14]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[15]  Yaochun Shen,et al.  Angular resonance absorption spectra of Langmuir-Blodgett films studied by the photoacoustic technique , 1994 .

[16]  T. E. Hartman,et al.  Tunneling of a Wave Packet , 1962 .

[17]  Sachit Grover,et al.  Optical rectenna solar cells using graphene geometric diodes , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[18]  Krishna Thyagarajan,et al.  A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures , 1988 .

[19]  Steven D. Novack,et al.  SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS , 2008 .

[20]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[21]  Guang H. Lin,et al.  Investigation of resonance light absorption and rectification by subnanostructures , 1996 .

[22]  Sachit Grover,et al.  Graphene geometric diodes for terahertz rectennas , 2013 .

[23]  H. Hubers,et al.  Terahertz Heterodyne Receivers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[25]  Erich N. Grossman,et al.  First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging , 2007, SPIE Defense + Commercial Sensing.

[26]  Dang Yuan Lei,et al.  Broadband light harvesting nanostructures robust to edge bluntness. , 2012, Physical review letters.

[27]  Saumil Joshi,et al.  Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling , 2013 .

[28]  A. Davies,et al.  Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers , 2004 .

[29]  William C. Brown,et al.  Optimization of the Efficiency and Other Properties of the Rectenna Element , 1976 .

[30]  Mario Dagenais,et al.  Solar spectrum rectification using nano-antennas and tunneling diodes , 2010, OPTO.

[31]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[32]  Kai Chang,et al.  A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission , 2002 .

[33]  J A Bean,et al.  Performance Optimization of Antenna-Coupled ${\rm Al}/{\rm AlO}_{x}/{\rm Pt}$ Tunnel Diode Infrared Detectors , 2011, IEEE Journal of Quantum Electronics.

[34]  N. M. Miskovsky,et al.  Simulations of infrared and optical rectification by geometrically asymmetric metal–vacuum–metal junctions for applications in energy conversion devices , 2010, Nanotechnology.

[35]  G. Moddel,et al.  Traveling-Wave Metal/Insulator/Metal Diodes for Improved Infrared Bandwidth and Efficiency of Antenna-Coupled Rectifiers , 2010, IEEE Transactions on Nanotechnology.

[36]  Yi Huang,et al.  Effects of substrate on the performance of photoconductive THz antennas , 2010, 2010 International Workshop on Antenna Technology (iWAT).

[37]  Z. Popovic,et al.  An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[38]  A. P. Vasil’ev,et al.  Characteristics of planar diodes based on heavily doped GaAs/AlAs superlattices in the terahertz frequency region , 2004 .

[39]  G. Moddel,et al.  Infrared optical response of geometric diode rectenna solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[40]  Sachit Grover,et al.  Solar power conversion using diodes coupled to antennas , 2011 .

[41]  M. Dagenais,et al.  A Focused Asymmetric Metal–Insulator–Metal Tunneling Diode: Fabrication, DC Characteristics and RF Rectification Analysis , 2011, IEEE Transactions on Electron Devices.

[42]  Prashanth C. Upadhya,et al.  Terahertz generation from coherent optical phonons in a biased GaAs photoconductive emitter , 2004 .

[43]  Max C. Lemme,et al.  Navigation aids in the search for future high-k dielectrics: Physical and electrical trends , 2007 .

[44]  J. Tucker,et al.  Photon detection in nonlinear tunneling devices , 1978 .

[45]  Prashanth C. Upadhya,et al.  Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters , 2003 .

[46]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[47]  Lars Samuelson,et al.  Nanometer-scale two-terminal semiconductor memory operating at room temperature , 2005 .

[48]  Sachit Grover,et al.  Quantum theory of operation for rectenna solar cells , 2013 .

[49]  R. L. Bailey,et al.  A Proposed New Concept for a Solar-Energy Converter , 1972 .

[50]  Wolfgang Porod,et al.  Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes , 2009 .

[51]  Alexandre Mayer,et al.  Three-dimensional analysis of the rectifying properties of geometrically asymmetric metal-vacuum-metal junctions treated as an oscillating barrier , 2008 .

[52]  Yaochun Shen,et al.  Terahertz applications in the pharmaceutical industry , 2013 .

[53]  Sachit Grover,et al.  Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers , 2012 .