Invariant Coordinate Selection

A general method for exploring multivariate data by comparing different estimates of multivariate scatter is presented. The method is based upon the eigenvalue-eigenvector decomposition of one scatter matrix relative to another. In particular, it is shown that the eigenvectors can be used to generate an affine invariant coordinate system for the multivariate data. Consequently, we view this method as a method for invariant coordinate selection (ICS). By plotting the data with respect to this new invariant coordinate system, various data structures can be revealed. For example, under certain independent components models, it is shown that the invariant coordinates correspond to the independent components. Another example pertains to mixtures of elliptical distributions. In this case, it is shown that a subset of the invariant coordinates corresponds to Fisher’s linear discriminant subspace, even though the class identifications of the data points are unknown. Some illustrative examples are given.

[1]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[2]  H. P. Lopuhaä Multivariate τ‐estimators for location and scatter , 1991 .

[3]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[4]  Probal Chaudhuri,et al.  On a transformation and re-transformation technique for constructing an affine equivariant multivariate median , 1996 .

[5]  B. Flury Common Principal Components and Related Multivariate Models , 1988 .

[6]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[7]  David E. Tyler,et al.  Constrained M-estimation for multivariate location and scatter , 1996 .

[8]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[9]  Detecting Structures by Means of Projection Pursuit , 1988 .

[10]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[11]  Biman Chakraborty,et al.  On an adaptive transformation–retransformation estimate of multivariate location , 1998 .

[12]  Hannu Oja,et al.  Independent component analysis based on symmetrised scatter matrices , 2007, Comput. Stat. Data Anal..

[13]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[14]  A. Buja,et al.  Projection Pursuit Indexes Based on Orthonormal Function Expansions , 1993 .

[15]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[16]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[17]  V. Yohai,et al.  Bias-robust estimators of multivariate scatter based on projections , 1992 .

[18]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[19]  H. Caussinus,et al.  Interesting Projections of Multidimensional Data by Means of Generalized Principal Component Analyses , 1990 .

[20]  David E. Tyler,et al.  Redescending $M$-Estimates of Multivariate Location and Scatter , 1991 .

[21]  H. Oja,et al.  Sign and rank covariance matrices , 2000 .

[22]  Anne Ruiz-Gazen Estimation robuste d'une matrice de dispersion et projections révélatrices , 1993 .

[23]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[24]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[25]  Anne Ruiz-Gazen,et al.  A monitoring display of multivariate outliers , 2003, Comput. Stat. Data Anal..

[26]  F. Prieto,et al.  Cluster Identification Using Projections , 2001 .

[27]  David E. Tyler,et al.  On the Breakdown Properties of Some Multivariate M‐Functionals * , 2005 .

[28]  M. Bilodeau,et al.  Theory of multivariate statistics , 1999 .

[29]  P. L. Davies,et al.  Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .

[30]  David E. Tyler,et al.  On the uniqueness of S-functionals and M-functionals under nonelliptical distributions , 2000 .

[31]  David E. Tyler Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics , 1994 .

[32]  J RousseeuwPeter,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[33]  H. P. Lopuhaä On the relation between S-estimators and M-estimators of multivariate location and covariance , 1989 .

[34]  Conceição Amado,et al.  Principal Axis Analysis , 2006 .

[35]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[36]  H. P. Lopuhaä ASYMPTOTICS OF REWEIGHTED ESTIMATORS OF MULTIVARIATE LOCATION AND SCATTER , 1999 .