Multiwavelet Discontinuous Galerkin-Accelerated Exact Linear Part (ELP) Method for the Shallow-Water Equations on the Cubed Sphere

Abstract In this paper a new approach is presented to increase the time-step size for an explicit discontinuous Galerkin numerical method. The attributes of this approach are demonstrated on standard tests for the shallow-water equations on the sphere. The addition of multiwavelets to the discontinuous Galerkin method, which has the benefit of being scalable, flexible, and conservative, provides a hierarchical scale structure that can be exploited to improve computational efficiency in both the spatial and temporal dimensions. This paper explains how combining a multiwavelet discontinuous Galerkin method with exact-linear-part time evolution schemes, which can remain stable for implicit-sized time steps, can help increase the time-step size for shallow-water equations on the sphere.

[1]  Rick Archibald,et al.  Adaptive discontinuous Galerkin methods in multiwavelets bases , 2011 .

[2]  Katherine J. Evans,et al.  Time Acceleration Methods for Advection on the Cubed Sphere , 2009, ICCS.

[3]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[4]  R. Nair Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model , 2009 .

[5]  R. K. Scott,et al.  An initial-value problem for testing numerical models of the global shallow-water equations , 2004 .

[6]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[7]  Gregory Beylkin,et al.  Fast adaptive algorithms in the non-standard form for multidimensional problems ✩ , 2007, 0706.0747.

[8]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[9]  Nicholas Coult Introduction to Discontinuous Wavelets , 2000 .

[10]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[11]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[12]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[13]  R. LeVeque Numerical methods for conservation laws , 1990 .

[14]  C. Jablonowski,et al.  Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .

[15]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[16]  Einar M. Rønquist,et al.  An Operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow , 1990 .

[17]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[18]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[19]  Mariana Vertenstein,et al.  Software Design for Petascale Climate Science , 2008 .

[20]  J. R. Bates,et al.  Semi-Lagrangian Integration of a Gridpoint Shallow Water Model on the Sphere , 1989 .

[21]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[24]  Amik St-Cyr,et al.  Nonlinear operator integration factor splitting for the shallow water equations , 2005 .

[25]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[26]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[27]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[28]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..

[29]  Vijaya R. Ambati,et al.  Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids , 2006 .