A High-Order Moving Mesh Kinetic Scheme Based on WENO Reconstruction for Compressible Flows on Unstructured Meshes

In this paper, we present a high-order moving mesh (HMM) kinetic scheme for compressible flow computations on unstructured meshes. To construct the scheme, we employ the frame of the remapping-free ALE-type kinetic method (Ni et al. in J Comput Phys 228:3154–3171, 2009) to get the discretization of compressible system. For the space accuracy, we use the weighted essential non-oscillatory reconstruction on the adaptive moving mesh from Tang and Tang (SIAM J Numer Anal 41:487–515 2003) to achieve time accuracy,we make use of the kinetic flux which includes time accurate integral, and thus obtain a HMM scheme. A number of numerical examples are given, especially an isentropic vortex problem to show the convergence order of the scheme. Numerical results demonstrate the accuracy and robustness of the scheme.

[1]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[2]  Feng Xiao,et al.  High order multi-moment constrained finite volume method. Part I: Basic formulation , 2009, J. Comput. Phys..

[3]  Song Jiang,et al.  A moving mesh BGK scheme for multi‐material flows , 2012 .

[4]  George Em Karniadakis,et al.  Regular Article: A Discontinuous Galerkin ALE Method for Compressible Viscous Flows in Moving Domains , 1999 .

[5]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[6]  Rainald Löhner,et al.  High-Reynolds number viscous flow computations using an unstructured-grid method , 2005 .

[7]  Pingwen Zhang,et al.  Second-Order Accurate Godunov Scheme for Multicomponent Flows on Moving Triangular Meshes , 2008, J. Sci. Comput..

[8]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[9]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[10]  Ruo Li,et al.  A General Moving Mesh Framework in 3D and its Application for Simulating the Mixture of Multi-Phase Flows , 2008 .

[11]  Jianqiang Han,et al.  An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics , 2007, J. Comput. Phys..

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  Song Jiang,et al.  Remapping-free ALE-type kinetic method for flow computations , 2009, J. Comput. Phys..

[14]  Tao Tang,et al.  Adaptive Mesh Redistibution Method Based on Godunov's Scheme , 2003 .

[15]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[16]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[17]  C. Liu,et al.  Universal High Order Subroutine with New Shock Detector for Shock Boundary Layer Interaction , 2009 .

[18]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[19]  Song Jiang,et al.  Efficient kinetic schemes for steady and unsteady flow simulations on unstructured meshes , 2008, J. Comput. Phys..

[20]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[21]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[22]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[23]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[24]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[26]  Marcel Vinokur,et al.  Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids , 2004 .

[27]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[30]  Guanghui Hu,et al.  Moving finite element simulations for reaction-diffusion systems , 2012 .

[31]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[32]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[33]  Changqiu Jin,et al.  A unified moving grid gas-kinetic method in Eulerian space for viscous flow computation , 2007, J. Comput. Phys..

[34]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[35]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[36]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[37]  Kyu Hong Kim,et al.  Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process , 2005 .

[38]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .