SLIP AESTHEASIS: a portable 2D slip/skin stretch display for the fingertip

Two dimensional lateral skin motions during manipulation are vital in ensuring grasping stability. This paper outlines the research, design, construction and testing of a completely portable slip/stretch feedback system for the fingertip. The device uses a V configuration of miniature motors to provide sensations of relative lateral motion (direction and velocity) onto the user's fingertips. This device has a mass of 22 g at the fingertip, 105 g at the forearm, Bluetooth communication to the simulation computer and a capacity of over 2 hrs continuous use. Testing involved user trails to determine quantitatively and qualitatively the realism and accuracy of the integrated system. These results show good levels of user ability to discriminate both directional and speed movements.

[1]  W.J. Tompkins,et al.  Electrotactile and vibrotactile displays for sensory substitution systems , 1991, IEEE Transactions on Biomedical Engineering.

[2]  F. L. Engel,et al.  Improved efficiency through I- and E-feedback: a trackball with contextual force feedback , 1994, Int. J. Hum. Comput. Stud..

[3]  J. Edward Colgate,et al.  Two experiments on the perception of slip at the fingertip , 2004, 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS '04. Proceedings..

[4]  Takashi Maeno,et al.  Method for displaying partial slip used for virtual grasp , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Kenneth O. Johnson,et al.  A rotating drum stimulator for scanning embossed patterns and textures across the skin , 1988, Journal of Neuroscience Methods.

[6]  Abderrahmane Kheddar,et al.  VITAL: a new low-cost vibro-tactile display system , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Fumihito Arai,et al.  Micro resonator using electromagnetic actuator for tactile display , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).

[8]  A. Kheddar,et al.  Thermal feedback model for virtual reality , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[9]  Henrik Arfwedson,et al.  Ericsson ’ s Bluetooth modules , 1999 .

[10]  Robert J. Webster,et al.  Design and Performance of a Two-Dimensional Tactile Slip Display , 2004 .

[11]  Günther Schmidt,et al.  Application-specific evaluation of tactile array displays for the human fingertip , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Nikolaos G. Tsagarakis,et al.  An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[13]  Kensuke Hasegawa,et al.  Slip sensor of industrial robot and its application , 1976 .

[14]  Abderrahmane Kheddar,et al.  VT vector-touch: a new slip/stretch tactile display , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  Johan Torsner,et al.  HIPERLAN type 2 for broadband wireless communication , 2000 .

[16]  Vincent Hayward,et al.  STReSS: A Practical Tactile Display System with One Millimeter Spatial Resolution and 700 Hz Refresh Rate , 2003 .

[17]  Karun B. Shimoga,et al.  A survey of perceptual feedback issues in dexterous telemanipulation. I. Finger force feedback , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.