A CARBON NANOTUBE-BASED SENSOR FOR CO 2 MONITORING

In this paper we report, apparently for the first time, application of multi-wall carbon nanotubes (MWNTs) to carbon dioxide sensing, based upon the measured changes in MWNT permittivity with CO2 exposure. The transduction platform used in this work is a planar, inductor-capacitor resonant-circuit (LC) sensor [10,11]. A thin layer of a MWNT-SiO2 composite is placed upon the inter-digital capacitor of the LC sensor; as the permittivity of the adjacent layer changes so does the sensor resonant frequency which is remotely monitored using a loop antenna [10]. The passive nature of the LC sensor enables long term monitoring without battery life-time issues, and the wireless nature of the platform enables monitoring of CO2 from within sealed, opaque containers such as food or medicine packages. High levels of CO2 within such containers are widely used as a determinant for contamination [12,13]. In addition to food quality monitoring CO2 sensors are important for industrial process control [14], monitoring air quality [15], etc.

[1]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[2]  F. Rodríguez-Reinoso,et al.  Chemistry and Physics of Carbon , 2022 .

[3]  S. Drost,et al.  Optimization of the geometry of gas-sensitive interdigital capacitors , 1991 .

[4]  Norman F. Sheppard,et al.  Design of a conductimetric pH microsensor based on reversibly swelling hydrogels , 1993 .

[5]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[6]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[7]  P. Dalgaard,et al.  Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. , 1997, International journal of food microbiology.

[8]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[9]  C. Marliere,et al.  EFFECT OF GAS ADSORPTION ON THE ELECTRICAL PROPERTIES OF SINGLE WALLED CARBON NANOTUBES MATS , 1999 .

[10]  Patrick Bernier,et al.  Carbon nanotubes and gas adsorption , 1999 .

[11]  Hanns-Erik Endres,et al.  A capacitive CO2 sensor system with suppression of the humidity interference , 1999 .

[12]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[13]  John F. Currie,et al.  Micromachined thin film solid state electrochemical CO2, NO2 and SO2 gas sensors , 1999 .

[14]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[15]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[16]  Christopher L. Davey,et al.  The dielectric properties of biological cells at radiofrequencies : Applications in biotechnology , 1999 .

[17]  Min-Suk Lee,et al.  A new process for fabricating CO2-sensing layers based on BaTiO3 and additives , 2000 .

[18]  Peter Zeppenfeld,et al.  Methane mobility in carbon nanotubes , 2000 .

[19]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[20]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[21]  Tatsumi Ishihara,et al.  A practical capacitive type CO2 sensor using CeO2/BaCO3/CuO ceramics , 2000 .

[22]  Eklund,et al.  Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes , 2000, Physical review letters.

[23]  K. G. Ong,et al.  A resonant printed-circuit sensor for remote query monitoring of environmental parameters , 2000 .

[24]  T Lindgren,et al.  Cabin environment and perception of cabin air quality among commercial aircrew. , 2000, Aviation, space, and environmental medicine.

[25]  Joseph M. DeSimone,et al.  CO2 Technology Platform: An Important Tool for Environmental Problem Solving. , 2001, Angewandte Chemie.

[26]  Neil Rodrigues,et al.  Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes , 2022 .