The Molpro quantum chemistry package.

Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.

[1]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. , 2009, The journal of physical chemistry. A.

[2]  Konrad Patkowski,et al.  Symmetry-forcing procedure and convergence behavior of perturbation expansions for molecular interaction energies , 2002 .

[3]  Guntram Rauhut,et al.  Vibrational multiconfiguration self-consistent field theory: implementation and test calculations. , 2010, The Journal of chemical physics.

[4]  Guntram Rauhut,et al.  Anharmonic frequencies of CX2Y2 (X, Y = O, N, F, H, D) isomers and related systems obtained from vibrational multiconfiguration self-consistent field theory. , 2011, The journal of physical chemistry. A.

[5]  Tatiana Korona,et al.  Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting. , 2007, The Journal of chemical physics.

[6]  Frederick R. Manby,et al.  Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase , 2014, Chemical Physics Letters.

[7]  Guntram Rauhut,et al.  Modeling of high-order terms in potential energy surface expansions using the reference-geometry Harris-Foulkes method. , 2013, Physical chemistry chemical physics : PCCP.

[8]  Andreas Heßelmann,et al.  Accurate Intermolecular Interaction Energies from a Combination of MP2 and TDDFT Response Theory. , 2010, Journal of chemical theory and computation.

[9]  Frederick R. Manby,et al.  Analytical gradients for projection-based wavefunction-in-DFT embedding , 2019, The Journal of Chemical Physics.

[10]  Francesco A Evangelista,et al.  An orbital-invariant internally contracted multireference coupled cluster approach. , 2011, The Journal of chemical physics.

[11]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[12]  Johannes Kästner,et al.  C(sp3 )-H Bond Activation by Vinylidene Gold(I) Complexes: A Concerted Asynchronous or Stepwise Process? , 2017, Chemistry.

[13]  Kirk A Peterson,et al.  Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr. , 2017, The Journal of chemical physics.

[14]  Hans-Joachim Werner,et al.  Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. , 2012, Physical chemistry chemical physics : PCCP.

[15]  Andreas Dreuw,et al.  A study of the excited electronic states of normal and fully deuterated furan by photoabsorption spectroscopy and high-level ab initio calculations , 2015 .

[16]  Daniel Kats,et al.  Communication: The distinguishable cluster approximation. , 2013, The Journal of chemical physics.

[17]  Guntram Rauhut,et al.  Anharmonic Franck-Condon Factors for the X̃(2)B1 ← X̃(1)A1 Photoionization of Ketene. , 2015, The journal of physical chemistry. A.

[18]  A. Misquitta,et al.  Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory. , 2013, Journal of chemical theory and computation.

[19]  Guntram Rauhut,et al.  Multi-level vibrational SCF calculations and FTIR measurements on furazan , 2005 .

[20]  Gerald Knizia,et al.  Electron flow in reaction mechanisms--revealed from first principles. , 2015, Angewandte Chemie.

[21]  Guntram Rauhut,et al.  Vibrational analysis of nitrosamine, a molecule with an almost constant potential along the inversion coordinate , 2018, Molecular Physics.

[22]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[23]  Andreas Köhn,et al.  Internally contracted multireference coupled-cluster theory in a multistate framework. , 2016, The Journal of chemical physics.

[24]  Guntram Rauhut,et al.  Localized Normal Coordinates in Accurate Vibrational Structure Calculations: Benchmarks for Small Molecules. , 2019, Journal of chemical theory and computation.

[25]  Amir Karton,et al.  The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit , 2017, 1712.09395.

[26]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[27]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[28]  Joachim Friedrich,et al.  Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies. , 2013, Journal of chemical theory and computation.

[29]  Hans-Joachim Werner,et al.  Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals. , 2016, The Journal of chemical physics.

[30]  Andreas Heßelmann,et al.  The coulombic σ-hole model describes bonding in CX3IY- complexes completely. , 2018, Physical chemistry chemical physics : PCCP.

[31]  Stefan Grimme,et al.  Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. , 2013, Journal of chemical theory and computation.

[32]  Per E. M. Siegbahn,et al.  Direct configuration interaction with a reference state composed of many reference configurations , 1980 .

[33]  Krzysztof Szalewicz,et al.  Dispersion energy from density-functional theory description of monomers. , 2003, Physical review letters.

[34]  Stefan Grimme,et al.  Extension of the D3 dispersion coefficient model. , 2017, The Journal of chemical physics.

[35]  Guntram Rauhut,et al.  Modeling of high-order many-mode terms in the expansion of multidimensional potential energy surfaces: application to vibrational spectra. , 2009, The Journal of chemical physics.

[36]  Pavel Hobza,et al.  Erratum to “S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures” , 2014, Journal of chemical theory and computation.

[37]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[38]  Georg Hetzer,et al.  Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory , 2000 .

[39]  Georg Jansen,et al.  First-order intermolecular interaction energies from Kohn–Sham orbitals , 2002 .

[40]  Tomasz Janowski,et al.  Quantum chemistry in parallel with PQS , 2009, J. Comput. Chem..

[41]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[42]  Krzysztof Szalewicz,et al.  Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .

[43]  Daniel Kats,et al.  Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). , 2016, The Journal of chemical physics.

[44]  Toru Shiozaki,et al.  Multireference explicitly correlated F12 theories , 2013 .

[45]  Lori A Burns,et al.  Appointing silver and bronze standards for noncovalent interactions: a comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches. , 2014, The Journal of chemical physics.

[46]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. , 2018, Journal of chemical theory and computation.

[47]  Daniel Kats,et al.  On the distinguishable cluster approximation for triple excitations. , 2019, The Journal of chemical physics.

[48]  Guntram Rauhut,et al.  Toward fast and accurate ab initio calculation of magnetic exchange in polynuclear lanthanide complexes. , 2019, Physical chemistry chemical physics : PCCP.

[49]  Robert Moszynski,et al.  Explicitly connected expansion for the average value of an observable in the coupled-cluster theory , 1993 .

[50]  Hans Lischka,et al.  Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. , 2012, Journal of chemical theory and computation.

[51]  Krzysztof Szalewicz,et al.  Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions , 2006 .

[52]  Guntram Rauhut,et al.  Vibrational analysis of methyl cation-Rare gas atom complexes: CH3 +-Rg (Rg = He, Ne, Ar, Kr). , 2019, The Journal of chemical physics.

[53]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[54]  D. Truhlar,et al.  Validation of electronic structure methods for isomerization reactions of large organic molecules. , 2011, Physical chemistry chemical physics : PCCP.

[55]  Walter Thiel,et al.  Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. , 2008, The Journal of chemical physics.

[56]  G. Rauhut,et al.  Fast and reliable ab initio calculation of crystal field splittings in lanthanide complexes. , 2017, The Journal of chemical physics.

[57]  Frederick R. Manby,et al.  Computational study of adsorption of cobalt on benzene and coronene , 2015 .

[58]  Guntram Rauhut,et al.  Rigorous use of symmetry within the construction of multidimensional potential energy surfaces. , 2018, The Journal of chemical physics.

[59]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction with multiple reference functions: avoided crossings and conical intersections. , 2011, The Journal of chemical physics.

[60]  Hans-Joachim Werner,et al.  Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. , 2009, The Journal of chemical physics.

[61]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[62]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[63]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[64]  P. Rosmus,et al.  PNO–CI and CEPA studies of electron correlation effects. IV. Ionization energies of the first and second row diatomic hydrides and the spectroscopic constants of their ions , 1977 .

[65]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[66]  Robert Moszynski,et al.  Time-Independent Coupled-Cluster Theory of the Polarization Propagator , 2005 .

[67]  Hans-Joachim Werner,et al.  Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory. , 2017, The Journal of chemical physics.

[68]  A. Hesselmann Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory. , 2008, The Journal of chemical physics.

[69]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[70]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[71]  Guntram Rauhut,et al.  Configuration selection within vibrational multiconfiguration self-consistent field theory: application to bridged lithium compounds. , 2011, The Journal of chemical physics.

[72]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[73]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[74]  Martin Schütz,et al.  Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states. , 2014, The Journal of chemical physics.

[75]  Tatiana Korona,et al.  Exchange-Dispersion Energy: A Formulation in Terms of Monomer Properties and Coupled Cluster Treatment of Intramonomer Correlation. , 2009, Journal of chemical theory and computation.

[76]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[77]  Yu Liu Linear scaling high-spin open-shell local correlation methods , 2011 .

[78]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[79]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[80]  Daniel Kats,et al.  Local CC2 response method based on the Laplace transform: orbital-relaxed first-order properties for excited states. , 2013, The Journal of chemical physics.

[81]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[82]  Frederick R Manby,et al.  Accelerating wavefunction in density-functional-theory embedding by truncating the active basis set. , 2015, The Journal of chemical physics.

[83]  Piotr Piecuch,et al.  Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. , 2005, The Journal of chemical physics.

[84]  Jan Almlöf,et al.  THE COULOMB OPERATOR IN A GAUSSIAN PRODUCT BASIS , 1995 .

[85]  D. Manolopoulos,et al.  An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom , 2000 .

[86]  Johannes Kästner,et al.  The Stabilizing Effects in Gold Carbene Complexes. , 2015, Angewandte Chemie.

[87]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[88]  Andreas Köhn,et al.  Revisiting the F + HCl → HF + Cl reaction using a multireference coupled-cluster method. , 2016, Physical chemistry chemical physics : PCCP.

[89]  Michael Dolg,et al.  Relativistic energy‐consistent pseudopotentials—Recent developments , 2002, J. Comput. Chem..

[90]  Frederick R Manby,et al.  Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. , 2009, The Journal of chemical physics.

[91]  J Grant Hill,et al.  Correlation consistent basis sets for explicitly correlated wavefunctions: pseudopotential-based basis sets for the post-d main group elements Ga-Rn. , 2014, The Journal of chemical physics.

[92]  Evert Jan Baerends,et al.  Exchange potential from the common energy denominator approximation for the Kohn–Sham Green’s function: Application to (hyper)polarizabilities of molecular chains , 2002 .

[93]  Peter J. Knowles,et al.  A determinant based full configuration interaction program , 1989 .

[94]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[95]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[96]  Kirk A. Peterson,et al.  Explicitly correlated composite thermochemistry of transition metal species. , 2013, The Journal of chemical physics.

[97]  Hans-Joachim Werner,et al.  Communication: Improved pair approximations in local coupled-cluster methods. , 2015, The Journal of chemical physics.

[98]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[99]  Georg Jansen,et al.  The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential , 2003 .

[100]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[101]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[102]  Guntram Rauhut,et al.  Toward large scale vibrational configuration interaction calculations. , 2009, The Journal of chemical physics.

[103]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[104]  Dominik Oschetzki,et al.  Pushing the limits in accurate vibrational structure calculations: anharmonic frequencies of lithium fluoride clusters (LiF)n, n = 2-10. , 2014, Physical chemistry chemical physics : PCCP.

[105]  Guntram Rauhut,et al.  A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems. , 2017, The Journal of chemical physics.

[106]  Georg Jansen,et al.  Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions , 2014 .

[107]  Peter J Knowles,et al.  Quasi-variational coupled cluster theory. , 2012, The Journal of chemical physics.

[108]  Daniel Kats,et al.  Speeding up local correlation methods. , 2014, The Journal of chemical physics.

[109]  Georg Jansen,et al.  Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory , 2002 .

[110]  Frederick R. Manby,et al.  Automatic code generation in density functional theory , 2001 .

[111]  Tatiana Korona,et al.  A coupled cluster treatment of intramonomer electron correlation within symmetry-adapted perturbation theory: benchmark calculations and a comparison with a density-functional theory description , 2013 .

[112]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[113]  Manoj K. Kesharwani,et al.  The cc-pV5Z-F12 basis set: reaching the basis set limit in explicitly correlated calculations , 2014, 1411.6827.

[114]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[115]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[116]  Tatiana Korona,et al.  Local CC2 electronic excitation energies for large molecules with density fitting. , 2006, The Journal of chemical physics.

[117]  Thomas F. Miller,et al.  Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst , 2016 .

[118]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[119]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[120]  M. Cinal,et al.  Exact and approximate exchange potentials investigated in terms of their matrix elements with the Kohn-Sham orbitals , 2005 .

[121]  Harold Basch,et al.  Compact effective potentials and efficient shared‐exponent basis sets for the first‐ and second‐row atoms , 1984 .

[122]  Thomas F. Miller,et al.  Ab Initio Characterization of the Electrochemical Stability and Solvation Properties of Condensed-Phase Ethylene Carbonate and Dimethyl Carbonate Mixtures , 2015 .

[123]  Peter J. Knowles,et al.  Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory , 2018 .

[124]  Hans-Joachim Werner,et al.  The self‐consistent electron pairs method for multiconfiguration reference state functions , 1982 .

[125]  So Hirata,et al.  Multiresolution potential energy surfaces for vibrational state calculations , 2007 .

[126]  Ajit Banerjee,et al.  Applications of multiconfigurational coupled‐cluster theory , 1982 .

[127]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[128]  H. Werner,et al.  Local treatment of electron excitations in the EOM-CCSD method , 2003 .

[129]  Guntram Rauhut,et al.  Comparison of methods for calculating Franck–Condon factors beyond the harmonic approximation: how important are Duschinsky rotations? , 2015 .

[130]  A. Görling,et al.  Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules , 2001 .

[131]  Michael Dolg,et al.  Relativistic small-core pseudopotentials for actinium, thorium, and protactinium. , 2014, The journal of physical chemistry. A.

[132]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[133]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[134]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[135]  Andreas Heßelmann,et al.  DFT-SAPT Intermolecular Interaction Energies Employing Exact-Exchange Kohn-Sham Response Methods. , 2018, Journal of chemical theory and computation.

[136]  Daniel Kats,et al.  Accurate thermochemistry from explicitly correlated distinguishable cluster approximation. , 2015, The Journal of chemical physics.

[137]  Wilfried Meyer,et al.  PNO-CI and CEPA studies of electron correlation effects , 1974 .

[138]  Guntram Rauhut,et al.  Multi-reference vibration correlation methods. , 2014, The Journal of chemical physics.

[139]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[140]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[141]  Ernest R. Davidson,et al.  Quasidegenerate Variational Perturbation Theory and the Calculation of First‐Order Properties from Variational Perturbation Theory Wave Functions , 1988 .

[142]  Markus Reiher,et al.  Exact decoupling of the relativistic Fock operator , 2012, Theoretical Chemistry Accounts.

[143]  Martin Head-Gordon,et al.  Benchmark variational coupled cluster doubles results , 2000 .

[144]  Viktor N Staroverov,et al.  Effective local potentials for orbital-dependent density functionals. , 2006, The Journal of chemical physics.

[145]  J Grant Hill,et al.  Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: the atoms B-Ne and Al-Ar. , 2010, The Journal of chemical physics.

[146]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[147]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[148]  Hans-Joachim Werner,et al.  A quadratically convergent multiconfiguration–self‐consistent field method with simultaneous optimization of orbitals and CI coefficients , 1980 .

[149]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[150]  Frederick R Manby,et al.  The orbital-specific virtual local triples correction: OSV-L(T). , 2013, The Journal of chemical physics.

[151]  Florian Weigend,et al.  Hartree–Fock exchange fitting basis sets for H to Rn † , 2008, J. Comput. Chem..

[152]  Hans-Joachim Werner,et al.  Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories. javascript:filterformular(´3´) , 2010 .

[153]  Kirk A Peterson,et al.  Accurate ab initio ro-vibronic spectroscopy of the X̃2Π CCN radical using explicitly correlated methods. , 2011, The Journal of chemical physics.

[154]  Hans-Joachim Werner,et al.  Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. , 2009, The Journal of chemical physics.

[155]  Frederick R Manby,et al.  Even-handed subsystem selection in projection-based embedding. , 2018, The Journal of chemical physics.

[156]  Peter J Knowles,et al.  Quasi-variational coupled-cluster theory: Performance of perturbative treatments of connected triple excitations. , 2018, The Journal of chemical physics.

[157]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[158]  Tatiana Korona,et al.  How Many Ligands Can Be Bound by Magnesium-Porphyrin? A Symmetry-Adapted Perturbation Theory Study. , 2012, Journal of chemical theory and computation.

[159]  E. V. Gromov,et al.  Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations. , 2014, Physical chemistry chemical physics : PCCP.

[160]  Andreas Görling,et al.  Molecular excitation spectra by TDDFT with the nonadiabatic exact exchange kernel , 2010 .

[161]  Tatiana Korona,et al.  The effect of local approximations in the ground-state coupled cluster wave function on electron affinities of large molecules , 2012 .

[162]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[163]  Daniel Kats,et al.  Orbital-Optimized Distinguishable Cluster Theory with Explicit Correlation. , 2019, Journal of chemical theory and computation.

[164]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[165]  Guntram Rauhut,et al.  Impact of local and density fitting approximations on harmonic vibrational frequencies. , 2006, The journal of physical chemistry. A.

[166]  K. Hirao,et al.  A generalization of the Davidson's method to large nonsymmetric eigenvalue problems , 1982 .

[167]  Daniel Kats,et al.  Improving the distinguishable cluster results: spin-component scaling , 2018 .

[168]  Wilfried Meyer,et al.  Configuration Expansion by Means of Pseudonatural Orbitals , 1977 .

[169]  Rodney J. Bartlett,et al.  The expectation value coupled-cluster method and analytical energy derivatives☆ , 1988 .

[170]  Tatiana Korona,et al.  Second-order exchange-induction energy of intermolecular interactions from coupled cluster density matrices and their cumulants. , 2008, Physical chemistry chemical physics : PCCP.

[171]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). , 2017, Journal of chemical theory and computation.

[172]  Andreas Köhn,et al.  Communication: Restoring full size extensivity in internally contracted multireference coupled cluster theory. , 2012, The Journal of chemical physics.

[173]  J. Ángyán,et al.  Aurophilic Interactions from Wave Function, Symmetry-Adapted Perturbation Theory, and Rangehybrid Approaches. , 2011, Journal of chemical theory and computation.

[174]  Tatiana Korona,et al.  Coupled cluster singles and doubles polarisation propagator accurate through the third order of Møller–Plesset theory , 2010 .

[175]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[176]  Ricardo A. Mata,et al.  Local correlation methods with a natural localized molecular orbital basis , 2007 .

[177]  Adrian J Mulholland,et al.  Multiscale analysis of enantioselectivity in enzyme-catalysed ‘lethal synthesis’ using projector-based embedding , 2018, Royal Society Open Science.

[178]  Daniel Kats,et al.  The distinguishable cluster approach from a screened Coulomb formalism. , 2016, The Journal of chemical physics.

[179]  Guntram Rauhut,et al.  Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations. , 2015, The Journal of chemical physics.

[180]  Wilfried Meyer,et al.  Ionization energies of water from PNO‐CI calculations , 2009 .

[181]  Andreas Köhn,et al.  Linear and quadratic internally contracted multireference coupled-cluster approximations. , 2019, The Journal of chemical physics.

[182]  Manoj K. Kesharwani,et al.  The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. , 2017, The Journal of chemical physics.

[183]  Trygve Helgaker,et al.  Coupled cluster energy derivatives. Analytic Hessian for the closed‐shell coupled cluster singles and doubles wave function: Theory and applications , 1990 .

[184]  Hans-Joachim Werner,et al.  Calculation of transition moments between internally contracted MRCI wave functions with non-orthogonal orbitals , 2007 .

[185]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[186]  Robert Moszynski,et al.  On decomposition of second‐order Mo/ller–Plesset supermolecular interaction energy and basis set effects , 1990 .

[187]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[188]  Toru Shiozaki,et al.  Communication: Second-order multireference perturbation theory with explicit correlation: CASPT2-F12. , 2010, The Journal of chemical physics.

[189]  Hans-Joachim Werner,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using intrinsic bond orbitals , 2018, Molecular Physics.

[190]  Hans-Joachim Werner,et al.  An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. , 2011, The Journal of chemical physics.

[191]  Hans-Joachim Werner,et al.  Accurate Intermolecular Interaction Energies Using Explicitly Correlated Local Coupled Cluster Methods [PNO-LCCSD(T)-F12]. , 2019, Journal of chemical theory and computation.

[192]  J Grant Hill,et al.  Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core-valence basis sets for Li, Be, Na, and Mg. , 2010, Physical chemistry chemical physics : PCCP.

[193]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[194]  Jon Baker,et al.  Recent developments in the PQS program , 2012 .

[195]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[196]  J Grant Hill,et al.  Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements. , 2017, The Journal of chemical physics.

[197]  Hans-Joachim Werner,et al.  Analytical energy gradients for internally contracted second-order multireference perturbation theory , 2003 .

[198]  David Feller,et al.  Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons. , 2010, The Journal of chemical physics.

[199]  Martin Schütz,et al.  A multistate local coupled cluster CC2 response method based on the Laplace transform. , 2009, The Journal of chemical physics.

[200]  R. Podeszwa,et al.  Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. , 2010, The Journal of chemical physics.

[201]  Andreas Görling,et al.  Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation kernels , 2009 .

[202]  Björn O. Roos,et al.  The complete active space SCF method in a fock‐matrix‐based super‐CI formulation , 2009 .

[203]  Andreas Köhn,et al.  Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly. , 2011, The Journal of chemical physics.

[204]  Peter Chen,et al.  Experimental and theoretical study of a gold(I) aminonitrene complex in the gas phase. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[205]  Peter J Knowles,et al.  Breaking multiple covalent bonds with Hartree-Fock-based quantum chemistry: Quasi-Variational Coupled Cluster theory with perturbative treatment of triple excitations. , 2012, Physical chemistry chemical physics : PCCP.

[206]  Hans-Joachim Werner,et al.  A comparison of variational and non-variational internally contracted multiconfiguration-reference configuration interaction calculations , 1990 .

[207]  Hans-Joachim Werner,et al.  A new internally contracted multi-reference configuration interaction method. , 2011, The Journal of chemical physics.

[208]  Slawomir M Cybulski,et al.  The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies. , 2007, The Journal of chemical physics.

[209]  Karol Kowalski,et al.  Can ordinary single-reference coupled-cluster methods describe the potential energy curve of N2? The renormalized CCSDT(Q) study , 2001 .

[210]  Georg Jansen,et al.  Single-determinant-based symmetry-adapted perturbation theory without single-exchange approximation , 2013 .

[211]  Frederick R. Manby,et al.  A Simple, Exact Density-Functional-Theory Embedding Scheme , 2012, Journal of chemical theory and computation.

[212]  Dominik Oschetzki,et al.  Convergence of vibrational angular momentum terms within the Watson Hamiltonian. , 2011, The Journal of chemical physics.

[213]  Daniel Kats,et al.  Speeding up local correlation methods: System-inherent domains. , 2016, The Journal of chemical physics.

[214]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[215]  Andreas Görling,et al.  Exact exchange kernel for time‐dependent density‐functional theory , 1998 .

[216]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[217]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[218]  Guntram Rauhut,et al.  A General Approach for Calculating Strongly Anharmonic Vibronic Spectra with a High Density of States: The X̃2B1 ← X̃1A1 Photoelectron Spectrum of Difluoromethane. , 2017, Journal of chemical theory and computation.

[219]  John F. Stanton,et al.  A simple scheme for the direct calculation of ionization potentials with coupled-cluster theory that exploits established excitation energy methods , 1999 .

[220]  Jürgen Gauss,et al.  NMR chemical shift calculations within local correlation methods: the GIAO-LMP2 approach , 2000 .

[221]  Dennis R. Salahub,et al.  Exchange-only optimized effective potential for molecules from resolution-of-the-identity techniques: Comparison with the local density approximation, with and without asymptotic correction , 2002 .

[222]  C. Bannwarth,et al.  Dispersion-Corrected Mean-Field Electronic Structure Methods. , 2016, Chemical reviews.

[223]  Trygve Helgaker,et al.  Mo/ller–Plesset energy derivatives , 1988 .

[224]  Andreas Köhn,et al.  Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory. , 2012, The Journal of chemical physics.

[225]  Peter J Knowles,et al.  Application of the quasi-variational coupled cluster method to the nonlinear optical properties of model hydrogen systems. , 2012, The Journal of chemical physics.

[226]  Tatiana Korona,et al.  Two-particle density matrix cumulant of coupled cluster theory. , 2008, Physical chemistry chemical physics : PCCP.

[227]  David Feller,et al.  An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies. , 2013, The Journal of chemical physics.

[228]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[229]  Hans-Joachim Werner,et al.  MCSCF optimization revisited. II. Combined first- and second-order orbital optimization for large molecules. , 2020, The Journal of chemical physics.

[230]  Andreas Görling,et al.  New KS Method for Molecules Based on an Exchange Charge Density Generating the Exact Local KS Exchange Potential , 1999 .

[231]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[232]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[233]  Toru Shiozaki,et al.  Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. , 2011, The Journal of chemical physics.

[234]  Daniel Kats,et al.  Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties. , 2010, The Journal of chemical physics.

[235]  T. Carrington,et al.  Variational quantum approaches for computing vibrational energies of polyatomic molecules , 2008 .

[236]  Johannes Kästner,et al.  Fe or Fe-NO catalysis? A quantum chemical investigation of the [Fe(CO)3(NO)](-)-catalyzed Cloke-Wilson rearrangement. , 2014, Chemistry.

[237]  Guntram Rauhut,et al.  Time-independent eigenstate-free calculation of vibronic spectra beyond the harmonic approximation. , 2015, The Journal of chemical physics.

[238]  Qiming Sun,et al.  Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals. , 2017, Journal of chemical theory and computation.

[239]  Pavel Rosmus,et al.  PNO‐CI and CEPA studies of electron correlation effects. VI. Electron affinities of the first‐row and second‐row diatomic hydrides and the spectroscopic constants of their negative ions , 1978 .

[240]  Frederick R Manby,et al.  Pushing the Limits of EOM-CCSD with Projector-Based Embedding for Excitation Energies. , 2017, The journal of physical chemistry letters.

[241]  Roland Lindh,et al.  Integral-direct electron correlation methods , 1999 .

[242]  Hans-Joachim Werner,et al.  Reaction path following by quadratic steepest descent , 1998 .

[243]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions. , 2008, Physical chemistry chemical physics : PCCP.

[244]  Guntram Rauhut,et al.  Analytical energy gradients for local coupled-cluster methods , 2001 .

[245]  Hans-Joachim Werner,et al.  Correlation regions within a localized molecular orbital approach. , 2008, The Journal of chemical physics.

[246]  J Grant Hill,et al.  Auxiliary Basis Sets for Density Fitting in Explicitly Correlated Calculations: The Atoms H-Ar. , 2015, Journal of chemical theory and computation.

[247]  Lucas Visscher,et al.  Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions , 1997 .

[248]  Daniel Kats,et al.  Application of Hermitian time-dependent coupled-cluster response Ansätze of second order to excitation energies and frequency-dependent dipole polarizabilities , 2012 .

[249]  Christof Hättig,et al.  Explicitly Correlated Coupled-Cluster Theory , 2010 .

[250]  Hans-Joachim Werner,et al.  Calculation of smooth potential energy surfaces using local electron correlation methods. , 2006, The Journal of chemical physics.

[251]  Andreas Köhn,et al.  The second-order approximate internally contracted multireference coupled-cluster singles and doubles method icMRCC2. , 2019, The Journal of chemical physics.

[252]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[253]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[254]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[255]  Tatiana Korona,et al.  Symmetry-Adapted Perturbation Theory Applied to Endohedral Fullerene Complexes: A Stability Study of H2@C60 and 2H2@C60. , 2009, Journal of chemical theory and computation.

[256]  Hans-Joachim Werner,et al.  Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors. , 2015, Journal of chemical theory and computation.

[257]  Frederick R Manby,et al.  The orbital-specific-virtual local coupled cluster singles and doubles method. , 2012, The Journal of chemical physics.

[258]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[259]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[260]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[261]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[262]  Frederick R. Manby,et al.  Explicitly correlated coupled cluster methods with pair-specific geminals , 2011 .

[263]  A. Granovsky,et al.  Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. , 2011, The Journal of chemical physics.

[264]  Per E. M. Siegbahn,et al.  On the internally contracted multireference CI method with full contraction , 1992 .

[265]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[266]  Andreas Hesselmann,et al.  Numerically stable optimized effective potential method with balanced Gaussian basis sets. , 2007, The Journal of chemical physics.

[267]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[268]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[269]  Dominik Oschetzki,et al.  Selected Aspects Concerning the Efficient Calculation of Vibrational Spectra beyond the Harmonic Approximation , 2012 .

[270]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[271]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b , 2002 .

[272]  G. Rauhut Efficient calculation of potential energy surfaces for the generation of vibrational wave functions. , 2004, The Journal of chemical physics.

[273]  Kirk A. Peterson,et al.  Explicitly Correlated Coupled Cluster Calculations for Molecules Containing Group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) Elements: Optimized Complementary Auxiliary Basis Sets for Valence and Core–Valence Basis Sets , 2012 .

[274]  Guntram Rauhut,et al.  Phosphorus Analogues of Methyl Nitrite CH3OPO and Nitromethane CH3PO2. , 2019, Angewandte Chemie.

[275]  Ernest R. Davidson,et al.  Hylleraas variational perturbation theory: Application to correlation problems in molecular systems , 1988 .

[276]  M. Radoń Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. , 2019, Physical chemistry chemical physics : PCCP.

[277]  Peter J Knowles,et al.  Rigorously extensive orbital-invariant renormalized perturbative triples corrections from quasi-variational coupled cluster theory. , 2013, The Journal of chemical physics.

[278]  Hans-Joachim Werner,et al.  Explicitly Correlated Local Electron Correlation Methods , 2017 .

[279]  Tatiana Korona,et al.  One-electron properties and electrostatic interaction energies from the expectation value expression and wave function of singles and doubles coupled cluster theory. , 2006, The Journal of chemical physics.

[280]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[281]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[282]  Daniel Kats,et al.  Perturbation Expansion of Internally Contracted Coupled-Cluster Theory up to Third Order. , 2019, Journal of chemical theory and computation.

[283]  Andreas Hesselmann,et al.  Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock. , 2011, The Journal of chemical physics.

[284]  Krzysztof Szalewicz,et al.  Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. , 2005, The Journal of chemical physics.

[285]  Dominik Oschetzki,et al.  Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches. , 2015, The Journal of chemical physics.

[286]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[287]  Tatiana Korona,et al.  Dispersion energy from density-fitted density susceptibilities of singles and doubles coupled cluster theory. , 2008, The Journal of chemical physics.

[288]  Krzysztof Szalewicz,et al.  Intermolecular forces from asymptotically corrected density functional description of monomers , 2002 .

[289]  Tatiana Korona,et al.  Electrostatic interactions between molecules from relaxed one-electron density matrices of the coupled cluster singles and doubles model , 2002 .

[290]  Guntram Rauhut,et al.  Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions. , 2016, The Journal of chemical physics.

[291]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller-Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. , 2019, Journal of chemical theory and computation.

[292]  Clark R. Landis,et al.  NBO 6.0: Natural bond orbital analysis program , 2013, J. Comput. Chem..

[293]  Michael Dolg,et al.  Relativistic pseudopotentials: their development and scope of applications. , 2012, Chemical reviews.

[294]  Andreas W. Götz,et al.  Density-Functional Theory with Orbital-Dependent Functionals: Exact-exchange Kohn-Sham and Density-Functional Response Methods , 2010 .

[295]  R. Needs,et al.  Correlated electron pseudopotentials for 3d-transition metals. , 2015, The Journal of chemical physics.

[296]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[297]  Hans-Joachim Werner,et al.  Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting. , 2016, Journal of chemical theory and computation.

[298]  Martin Head-Gordon,et al.  A J matrix engine for density functional theory calculations , 1996 .

[299]  A. Hesselmann,et al.  Intermolecular symmetry-adapted perturbation theory study of large organic complexes. , 2014, The Journal of chemical physics.

[300]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). , 2017, Journal of chemical theory and computation.

[301]  Adrian J Mulholland,et al.  High-accuracy computation of reaction barriers in enzymes. , 2006, Angewandte Chemie.

[302]  Jürgen Gauss,et al.  State‐specific multireference coupled‐cluster theory , 2013 .

[303]  R. T. Sharp,et al.  A Variational Approach to the Unipotential Many-Electron Problem , 1953 .

[304]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. , 2015, Journal of chemical theory and computation.

[305]  Florian Weigend,et al.  Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides. , 2012, Journal of chemical theory and computation.

[306]  A. Görling Orbital- and state-dependent functionals in density-functional theory. , 2005, The Journal of chemical physics.

[307]  Tatiana Korona,et al.  First-order exchange energy of intermolecular interactions from coupled cluster density matrices and their cumulants. , 2008, The Journal of chemical physics.

[308]  Qianli Ma,et al.  Explicitly correlated local coupled‐cluster methods using pair natural orbitals , 2018, WIREs Computational Molecular Science.

[309]  Tatiana Korona,et al.  Time-independent coupled cluster theory of the polarization propagator. Implementation and application of the singles and doubles model to dynamic polarizabilities and van der Waals constants† , 2006 .

[310]  Adrian J Mulholland,et al.  Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase. , 2010, The journal of physical chemistry. B.

[311]  Simon J. Bennie,et al.  A Projector-Embedding Approach for Multiscale Coupled-Cluster Calculations Applied to Citrate Synthase. , 2016, Journal of chemical theory and computation.

[312]  Tatiana Korona,et al.  Chiral recognition by fullerenes: CHFClBr enantiomers in the C82 cage. , 2016, Physical chemistry chemical physics : PCCP.

[313]  Martin Schütz,et al.  A new, fast, semi-direct implementation of linear scaling local coupled cluster theory , 2002 .

[314]  Kirk A. Peterson,et al.  Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets , 2009 .

[315]  Peter Pulay,et al.  Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..

[316]  Georg Jansen,et al.  Intermolecular exchange-induction energies without overlap expansion , 2012, Theoretical Chemistry Accounts.

[317]  Kirk A Peterson,et al.  Optimized auxiliary basis sets for explicitly correlated methods. , 2008, The Journal of chemical physics.

[318]  Wilfried Meyer,et al.  Finite perturbation calculation for the static dipole polarizabilities of the atoms Na through Ca , 1976 .

[319]  Francesco A Evangelista,et al.  Perspective: Multireference coupled cluster theories of dynamical electron correlation. , 2018, The Journal of chemical physics.

[320]  H. Werner,et al.  Chapter 4 On the Selection of Domains and Orbital Pairs in Local Correlation Treatments , 2006 .

[321]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[322]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[323]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[324]  R. Needs,et al.  Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg. , 2005, The Journal of chemical physics.

[325]  Thomas F. Miller,et al.  Pendant Hydrogen-Bond Donors in Cobalt Catalysts Independently Enhance CO2 Reduction , 2018, ACS central science.

[326]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[327]  Andreas Köhn,et al.  How To Arrive at Accurate Benchmark Values for Transition Metal Compounds: Computation or Experiment? , 2017, Journal of chemical theory and computation.

[328]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[329]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[330]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[331]  J. D. Talman,et al.  Optimized effective atomic central potential , 1976 .

[332]  J. Hill,et al.  Approaching the Hartree-Fock Limit through the Complementary Auxiliary Basis Set Singles Correction and Auxiliary Basis Sets. , 2017, Journal of chemical theory and computation.

[333]  Pavel Rosmus,et al.  PNO–CI and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first‐row and second‐row diatomic hydrides , 1975 .

[334]  C Z Wang,et al.  Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. , 2004, The Journal of chemical physics.

[335]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[336]  Bridgette Cooper,et al.  Benchmark studies of variational, unitary and extended coupled cluster methods. , 2010, The Journal of chemical physics.

[337]  Guntram Rauhut,et al.  Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[338]  Frank Neese,et al.  SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. , 2016, The Journal of chemical physics.

[339]  Toru Shiozaki,et al.  Analytical energy gradients for second-order multireference perturbation theory using density fitting. , 2013, The Journal of chemical physics.

[340]  Andreas Heßelmann,et al.  Geometry optimisations with a nonlocal density-functional theory method based on a double Hirshfeld partitioning. , 2018, The Journal of chemical physics.

[341]  Daniel Kats,et al.  Communication: The distinguishable cluster approximation. II. The role of orbital relaxation. , 2014, The Journal of chemical physics.

[342]  Hans-Joachim Werner,et al.  Application of explicitly correlated coupled-cluster methods to molecules containing post-3d main group elements , 2011 .

[343]  Daniel Kats,et al.  Sparse tensor framework for implementation of general local correlation methods. , 2013, The Journal of chemical physics.

[344]  A. Hesselmann Assessment of a Nonlocal Correction Scheme to Semilocal Density Functional Theory Methods. , 2013, Journal of chemical theory and computation.

[345]  Daniel Kats,et al.  Multi-state local complete active space second-order perturbation theory using pair natural orbitals (PNO-MS-CASPT2). , 2019, The Journal of chemical physics.

[346]  Jiří Čížek,et al.  Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .

[347]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[348]  Dominik Oschetzki,et al.  Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations. , 2014, The Journal of chemical physics.

[349]  Hans-Joachim Werner,et al.  Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. , 2019, The Journal of chemical physics.

[350]  Hans-Joachim Werner,et al.  Analytical energy gradients for explicitly correlated wave functions. II. Explicitly correlated coupled cluster singles and doubles with perturbative triples corrections: CCSD(T)-F12. , 2018, The Journal of chemical physics.

[351]  Toru Shiozaki,et al.  Pyrazine excited states revisited using the extended multi-state complete active space second-order perturbation method. , 2013, Physical chemistry chemical physics : PCCP.

[352]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[353]  Daniel Kats,et al.  Embedded Multireference Coupled Cluster Theory. , 2018, Journal of chemical theory and computation.