Characterizing and Tailoring Spatial Correlations in Multimode Parametric Down-Conversion

Photons entangled in their position-momentum degrees of freedom (DoFs) serve as an elegant manifestation of the Einstein-Podolsky-Rosen paradox, while also enhancing quantum technologies for communication, imaging, and computation. The multi-mode nature of photons generated in parametric downconversion has inspired a new generation of experiments on high-dimensional entanglement, ranging from complete quantum state teleportation to exotic multi-partite entanglement. However, precise characterisation of the underlying position-momentum state is notoriously difficult due to limitations in detector technology, resulting in a slow and inaccurate reconstruction riddled with noise. Furthermore, theoretical models for the generated two-photon state often forgo the importance of the measurement system, resulting in a discrepancy between theory and experiment. Here we formalise a description of the two-photon wavefunction in the spatial domain, referred to as the collected joint-transverse-momentum-amplitude (JTMA), which incorporates both the generation and measurement system involved. We go on to propose and demonstrate a practical and efficient method to accurately reconstruct the collected JTMA using a simple phase-step scan known as the $2D\pi$-measurement. Finally, we discuss how precise knowledge of the collected JTMA enables us to generate tailored high-dimensional entangled states that maximise discrete-variable entanglement measures such as entanglement-of-formation or entanglement dimensionality, and optimise critical experimental parameters such as photon heralding efficiency. By accurately and efficiently characterising photonic position-momentum entanglement, our results unlock its full potential for discrete-variable quantum information science and lay the groundwork for future quantum technologies based on multi-mode entanglement.

[1]  F. Steinlechner,et al.  Justifying the thin-crystal approximation in spontaneous parametric down-conversion for collinear phase matching , 2021 .

[2]  Natalia Herrera Valencia,et al.  Entangled ripples and twists of light: radial and azimuthal Laguerre–Gaussian mode entanglement , 2021, 2104.04506.

[3]  Natalia Herrera Valencia,et al.  Is high-dimensional photonic entanglement robust to noise? , 2021 .

[4]  D. Faccio,et al.  Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera , 2020, npj Quantum Information.

[5]  Natalia Herrera Valencia,et al.  Genuine High-Dimensional Quantum Steering. , 2020, Physical review letters.

[6]  Matej Pivoluska,et al.  High-Dimensional Pixel Entanglement: Efficient Generation and Certification , 2020, Quantum.

[7]  Siyuan Yu,et al.  Distribution of high-dimensional orbital angular momentum entanglement over a 1  km few-mode fiber , 2020 .

[8]  Chao Zhang,et al.  Experimental creation of multi-photon high-dimensional layered quantum states , 2020, 2001.06253.

[9]  Mario Krenn,et al.  Advances in high-dimensional quantum entanglement , 2019, 1911.10006.

[10]  Leif Katsuo Oxenløwe,et al.  High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges , 2019, Advanced Quantum Technologies.

[11]  Will McCutcheon,et al.  Unscrambling entanglement through a complex medium , 2019, Nature Physics.

[12]  F. Setzpfandt,et al.  Perspectives for Applications of Quantum Imaging , 2019, Laser & Photonics Reviews.

[13]  R. Boyd,et al.  Realization of the Einstein-Podolsky-Rosen Paradox Using Radial Position and Radial Momentum Variables. , 2019, Physical review letters.

[14]  R. Ursin,et al.  Overcoming Noise in Entanglement Distribution , 2019, Physical Review X.

[15]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[16]  B. M. Henson,et al.  Bell correlations between spatially separated pairs of atoms , 2018, Nature Communications.

[17]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[18]  Robert Fickler,et al.  Measuring azimuthal and radial modes of photons. , 2018, Optics express.

[19]  Michael L. Fanto,et al.  Quantifying entanglement in a 68-billion-dimensional quantum state space , 2018, Nature Communications.

[20]  J. Fleischer,et al.  General Model of Photon-Pair Detection with an Image Sensor. , 2018, Physical review letters.

[21]  T. Wasak,et al.  Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. , 2017, Physical review letters.

[22]  Matej Pivoluska,et al.  Measurements in two bases are sufficient for certifying high-dimensional entanglement , 2017, Nature Physics.

[23]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[24]  Marcelo Terra Cunha,et al.  Most incompatible measurements for robust steering tests , 2017, 1704.02994.

[25]  Nicolas Gisin,et al.  Quantifying Photonic High-Dimensional Entanglement. , 2017, Physical review letters.

[26]  R. Ursin,et al.  Distribution of high-dimensional entanglement via an intra-city free-space link , 2016, Nature Communications.

[27]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Stefano Pironio,et al.  Bell Inequalities Tailored to Maximally Entangled States. , 2016, Physical review letters.

[29]  Anton Zeilinger,et al.  A quantum router for high-dimensional entanglement , 2016, 1605.05947.

[30]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[31]  M. D. Dood,et al.  Observation of Four-Photon Orbital Angular Momentum Entanglement. , 2015, Physical review letters.

[32]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[33]  John C. Howell,et al.  Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone , 2015, 1502.06996.

[34]  Matthew E. Grein,et al.  Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs , 2014, 1407.8487.

[35]  P. H. Souto Ribeiro,et al.  Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators , 2014, Scientific Reports.

[36]  Robert W. Boyd,et al.  Quantum imaging technologies , 2014, 1406.1685.

[37]  A. Zeilinger,et al.  Bose-Einstein condensate of metastable helium for quantum correlation experiments , 2014, 1406.1322.

[38]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[39]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[40]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[41]  Gerd Leuchs,et al.  Transverse entanglement of biphotons , 2013, CLEO: 2013.

[42]  Marcus Huber,et al.  Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement , 2013, 1301.2455.

[43]  Jörn Beyer,et al.  Highly efficient heralding of entangled single photons. , 2012, Optics express.

[44]  S. Walborn,et al.  Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion , 2012, 1208.4336.

[45]  E. Eliel,et al.  Full-field quantum correlations of spatially entangled photons. , 2012, Physical review letters.

[46]  F. Devaux,et al.  Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down conversion , 2012, 1204.0990.

[47]  S. Barnett,et al.  Spatial Schmidt modes generated in parametric down-conversion , 2012, 1201.3041.

[48]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[49]  M. J. Padgett,et al.  Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems , 2011, 1112.3910.

[50]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[51]  S.P.Kulik,et al.  Angular Schmidt Modes in Spontaneous Parametric Down-Conversion , 2011, 1103.4077.

[52]  Stephen M. Barnett,et al.  Full characterization of the quantum spiral bandwidth of entangled biphotons , 2010, 1011.5970.

[53]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[54]  L. Caspani,et al.  Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion , 2010 .

[55]  S. Barnett,et al.  Angular two-photon interference and angular two-qubit states. , 2010, Physical review letters.

[56]  R. Bennink,et al.  Spatial Entanglement and Optimal Single-Mode Coupling , 2009 .

[57]  Stefano Pironio,et al.  Closing the detection loophole in Bell experiments using qudits. , 2009, Physical review letters.

[58]  Robert W. Boyd,et al.  Exploring energy-time entanglement Using geometric phase , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[59]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[60]  J. Sipe,et al.  Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach , 2008 .

[61]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[62]  D. Ljunggren,et al.  Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers , 2005, quant-ph/0507046.

[63]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[64]  C. K. Law,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2003, Physical review letters.

[65]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[66]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[68]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[69]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.

[70]  A. Sergienko,et al.  Spatiotemporal grouping of photons in spontaneous parametric scattering of light , 1985 .

[71]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[72]  J. Arnaud,et al.  Technique for fast measurement of gaussian laser beam parameters. , 1971, Applied optics.

[73]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[74]  D. Bohm,et al.  Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky , 1957 .

[75]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[76]  J. S. BELLt ON THE EINSTEIN PODOLSKY ROSEN PARADOX* , 2017 .