Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix.

The optical properties of metallic spherical nanoparticles embedded in host liquid matrix are studied. Extended Maxwell-Garnett-Mie formulation which accounts for size dispersion, the intrinsic confinement, and extrinsic size effect, is proposed for the calculation of the effective dielectric function and absorption coefficient of size dispersion of colloidal solution of Au and Ag nanoparticles in water. We demonstrate that the size distribution induces an inhomogeneous broadening and an increase of the amplitude of the plasmon band. A large redshift of the plasmon band is also observed for silver nanoparticles. Compared to the conventional Maxwell Garnett theory, we demonstrated that this model gives better description of the measured absorption spectra of colloidal gold solutions.

[1]  T. P. Radhakrishnan,et al.  Nanoparticle-Embedded Polymer: In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting , 2005 .

[2]  G. Carotenuto Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size , 2001 .

[3]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[4]  P. Nordlander,et al.  Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties , 2011 .

[5]  L. Liz‐Marzán,et al.  Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles. , 2009, Nano letters.

[6]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[7]  P. Chylek,et al.  Dielectric constant of a composite inhomogeneous medium , 1983 .

[8]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[9]  Yann Boutant,et al.  Product authentication based on the physical link induced by the photo-inscription of a (sub-micron) bar code , 2008 .

[10]  T. Zeng,et al.  First-Principles Study and Model of Dielectric Functions of Silver Nanoparticles , 2010 .

[11]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[12]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[13]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[14]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[15]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[16]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[17]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[18]  N. Moncoffre,et al.  Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film , 2011 .

[19]  Dielectric function of aggregates of small metallic particles embedded in host insulating matrix , 2000, cond-mat/0007497.

[20]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[21]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[22]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[23]  A. E. Naciri,et al.  Size distribution dependence of the dielectric function of Si quantum dots described by a modified Maxwell-Garnett formulation , 2011 .

[24]  Barrera,et al.  Effective dielectric response of polydispersed composites. , 1990, Physical review. B, Condensed matter.

[25]  R. Sayah,et al.  Growth by heat treatment of silver nanorods inside mesostructured silica thin films: Synthesis, colours of thin films, study of some experimental parameters and characterization , 2011 .

[26]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[27]  W. Caseri,et al.  Oriented pearl-necklace arrays of metallic nanoparticles in polymers : a new route toward polarization-dependent color filters , 1999 .

[28]  D. Chakravorty,et al.  Electrical conductance of silver nanoparticles grown in glass-ceramic , 1990 .

[29]  R. Ruppin,et al.  Evaluation of extended Maxwell-Garnett theories , 2000 .

[30]  M. Broyer,et al.  Optical extinction spectroscopy of single silver nanoparticles , 2007 .

[31]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[32]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.