Isoperimetry and noise sensitivity in Gaussian space
暂无分享,去创建一个
[1] Gil Kalai,et al. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..
[2] Rocco A. Servedio,et al. Testing Halfspaces , 2007, SIAM J. Comput..
[3] Ryan O'Donnell,et al. Analysis of Boolean Functions , 2014, ArXiv.
[4] Elchanan Mossel,et al. Robust Optimality of Gaussian Noise Stability , 2012, 1210.4126.
[5] Nicolas de Condorcet. Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .
[6] M. Hino. On Short Time Asymptotic Behavior of Some Symmetric Diffusions on General State Spaces , 2002 .
[7] W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[8] S. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .
[9] Quantitative Isoperimetric Inequalities on the Real Line , 2010, 1011.3995.
[10] Paul J. Nahin. When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible , 2011 .
[11] A. Ehrhard,et al. Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes , 1986 .
[12] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[13] Elchanan Mossel. Gaussian Bounds for Noise Correlation of Functions , 2007, FOCS 2007.
[14] Bo'az Klartag,et al. Quantum one-way communication can be exponentially stronger than classical communication , 2011, STOC '11.
[15] H. Fédérer. Geometric Measure Theory , 1969 .
[16] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[17] C. Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .
[18] Ryan O'Donnell,et al. Gaussian noise sensitivity and Fourier tails , 2012, 2012 IEEE 27th Conference on Computational Complexity.
[19] Uriel Feige,et al. On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.
[20] M. Ledoux. The concentration of measure phenomenon , 2001 .
[21] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[22] P. Levy,et al. Problèmes concrets d'analyse fonctionnelle , 1952 .
[23] Howard J. Karloff. How Good is the Goemans-Williamson MAX CUT Algorithm? , 1999, SIAM J. Comput..
[24] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[25] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[26] I. Pinelis. Optimal Tail Comparison Based on Comparison of Moments , 1998 .
[27] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[28] M. Ledoux. From Concentration to Isoperimetry: Semigroup Proofs , 2011 .
[29] M. Ledoux. The geometry of Markov diffusion generators , 1998 .
[30] I. Benjamini,et al. Noise sensitivity of Boolean functions and applications to percolation , 1998, math/9811157.
[31] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[32] Daniel M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions , 2010, Computational Complexity Conference.
[33] E. Carlen,et al. On the cases of equality in Bobkov's inequality and Gaussian rearrangement , 1999 .
[34] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[35] M. Ledoux,et al. Isoperimetry and Gaussian analysis , 1996 .
[36] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .
[37] N. Fusco,et al. On the isoperimetric deficit in Gauss space , 2011 .
[38] M. Ledoux,et al. Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .
[39] A. Ehrhard. Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes , 1984 .
[40] Sharp Sobolev inequalities of second order , 2003 .
[41] Elchanan Mossel,et al. Robust dimension free isoperimetry in Gaussian space , 2012, 1202.4124.
[42] Elchanan Mossel,et al. Maximally stable Gaussian partitions with discrete applications , 2009, 0903.3362.
[43] Sergey G. Bobkov,et al. Extremal properties of half-spaces for log-concave distributions , 1996 .