CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 ? 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

[1]  J. Farihi,et al.  Externally Polluted White Dwarfs with Dust Disks , 2007, 0704.1170.

[2]  J. Liebert,et al.  Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements , 1995 .

[3]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[4]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[5]  M. Jura,et al.  Carbon Deficiency in Externally Polluted White Dwarfs: Evidence for Accretion of Asteroids , 2006, astro-ph/0609045.

[6]  Mukremin Kilic,et al.  Excess Infrared Radiation from the Massive DAZ White Dwarf GD 362: A Debris Disk? , 2005, astro-ph/0509188.

[7]  J. Farihi,et al.  Infrared Emission from the Dusty Disk Orbiting GD 362, an Externally Polluted White Dwarf , 2007 .

[8]  List of Known White Dwarfs , 1941 .

[9]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[10]  B. Zuckerman,et al.  ROCKY EXTRASOLAR PLANETARY COMPOSITIONS DERIVED FROM EXTERNALLY POLLUTED WHITE DWARFS , 2011, 1108.1565.

[11]  J. Southworth,et al.  SDSS J104341.53+085558.2: a second white dwarf with a gaseous debris disc , 2007, 0705.0447.

[12]  B. Zuckerman,et al.  INFRARED SIGNATURES OF DISRUPTED MINOR PLANETS AT WHITE DWARFS , 2009, 0901.0973.

[13]  Pierre Chayer,et al.  Radiative Levitation in Hot White Dwarfs: Equilibrium Theory , 1995 .

[14]  Detlev Koester,et al.  White Dwarf Spectra and Atmosphere Models , 2008, 0812.0482.

[15]  Inseok Song,et al.  A Dusty Disk around GD 362, a White Dwarf with a Uniquely High Photospheric Metal Abundance , 2005 .

[16]  Norbert Christlieb,et al.  High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia progenitor survey - II. DB and DBA stars , 2007, 0706.2936.

[17]  Marc J. Kuchner,et al.  The New Class of Dusty DAZ White Dwarfs , 2007, astro-ph/0703473.

[18]  B. Zuckerman,et al.  Excess infrared radiation from a white dwarf—an orbiting brown dwarf? , 1987, Nature.

[19]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[20]  D. Koester,et al.  Accretion and diffusion in white dwarfs - New diffusion timescales and applications to GD 362 and G 29-38 , 2009, 0903.1499.

[21]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[22]  J. Farihi,et al.  SIX WHITE DWARFS WITH CIRCUMSTELLAR SILICATES , 2008, 0811.1740.

[23]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[24]  James Liebert,et al.  On the Spectral Evolution of Cool, Helium-Atmosphere White Dwarfs: Detailed Spectroscopic and Photometric Analysis of DZ Stars , 2007, astro-ph/0703758.

[25]  Gilles Fontaine,et al.  A study of metal abundance patterns in cool white dwarfs. II - Simulations of accretion episodes , 1993 .

[26]  Gilles Fontaine,et al.  Diffusion in white dwarfs - New results and comparative study , 1986 .

[27]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .

[28]  M. Jura,et al.  POLLUTION OF SINGLE WHITE DWARFS BY ACCRETION OF MANY SMALL ASTEROIDS , 2008, 0802.4075.

[29]  J. Farihi,et al.  X-RAY AND INFRARED OBSERVATIONS OF TWO EXTERNALLY POLLUTED WHITE DWARFS , 2009 .

[30]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[31]  K. Righter,et al.  Core Formation in Earth's Moon, Mars, and Vesta , 1996 .

[32]  John H. Jones The composition of the mantle of the eucrite parent body and the origin of eucrites , 1984 .

[33]  Norbert Christlieb,et al.  Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample , 2005 .

[34]  Ted von Hippel,et al.  THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY , 2008, 0810.3276.

[35]  Marc J. Kuchner,et al.  The Dust Cloud around the White Dwarf G29-38 , 2005, astro-ph/0511358.

[36]  C. Tappert,et al.  A DUSTY COMPONENT TO THE GASEOUS DEBRIS DISK AROUND THE WHITE DWARF SDSS J1228+1040 , 2009, 0902.4044.

[37]  E. Burbidge,et al.  Spectra of white dwarfs , 1975 .

[38]  D. Koester,et al.  Element abundances in cool white dwarfs - II. Ultraviolet observations of DZ white dwarfs , 2002 .

[39]  P. Buseck Pallasite meteorites—mineralogy, petrology and geochemistry , 1977 .

[40]  J. Greenstein,et al.  Iron and magnesium in the white dwarf GD 40 - A test of diffusion theory , 1983 .

[41]  W. McDonough,et al.  The composition of the Earth , 1995 .

[42]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[43]  D. Koester,et al.  The accretion-diffusion scenario for metals in cool white dwarfs , 2006 .

[44]  J. Greenstein,et al.  AN ATLAS OF OPTICAL SPECTRA OF WHITE-DWARF STARS , 1993 .

[45]  T. Spohn,et al.  Water, Life, and Planetary Geodynamical Evolution , 2007 .

[46]  A. Gianninas,et al.  Discovery of a Cool, Massive, and Metal-rich DAZ White Dwarf , 2004, astro-ph/0410706.

[47]  Mukremin Kilic,et al.  Debris Disks around White Dwarfs: The DAZ Connection , 2006, astro-ph/0603774.

[48]  B. Fegley,et al.  The planetary scientist's companion / Katharina Lodders, Bruce Fegley. , 1998 .

[49]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[50]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[51]  J. Greenstein,et al.  Spectrophotometry of white dwarfs as observed at high signal-to-noise ratio. II , 1990 .

[52]  T. Marsh,et al.  A Gaseous Metal Disk Around a White Dwarf , 2006, Science.

[53]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[54]  B. Zuckerman,et al.  The Chemical Composition of an Extrasolar Minor Planet , 2007, 0708.0198.

[55]  J. Greenstein,et al.  A proposed new white dwarf spectral classification system , 1983 .

[56]  Dan Lubin,et al.  Relative Flux Calibration of Keck HIRES Echelle Spectra , 2003 .

[57]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .