Robust flow reconstruction from limited measurements via sparse representation

In many applications it is important to estimate a fluid flow field from limited and possibly corrupt measurements. Current methods in flow estimation often use least squares regression to reconstruct the flow field, finding the minimum-energy solution that is consistent with the measured data. However, this approach may be prone to overfitting and sensitive to noise. To address these challenges we instead seek a sparse representation of the data in a library of examples. Sparse representation has been widely used for image recognition and reconstruction, and it is well-suited to structured data with limited, corrupt measurements. We explore sparse representation for flow reconstruction on a variety of fluid data sets with a wide range of complexity, including vortex shedding past a cylinder at low Reynolds number, a mixing layer, and two geophysical flows. In addition, we compare several measurement strategies and consider various types of noise and corruption over a range of intensities. We find that sparse representation has considerably improved estimation accuracy and robustness to noise and corruption compared with least squares methods. We also introduce a sparse estimation procedure on local spatial patches for complex multiscale flows that preclude a global sparse representation. Based on these results, sparse representation is a promising framework for extracting useful information from complex flow fields with realistic measurements.

[1]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[2]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[3]  Pierre Sagaut,et al.  Reconstruction of unsteady viscous flows using data assimilation schemes , 2016, J. Comput. Phys..

[4]  Jian Yu,et al.  Flowfield Reconstruction Method Using Artificial Neural Network , 2019, AIAA Journal.

[5]  W. Marsden I and J , 2012 .

[6]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[7]  Sutanu Sarkar,et al.  Simulations of Spatially Developing Two-Dimensional Shear Layers and Jets , 1997 .

[8]  da Silva,et al.  An EnKF-based Flow State Estimator for Aerodynamic Problems , 2019 .

[9]  Shie Mannor,et al.  Robust Regression and Lasso , 2008, IEEE Transactions on Information Theory.

[10]  Frank Noé,et al.  Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics , 2017, The Journal of chemical physics.

[11]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[12]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[13]  Joel A. Tropp,et al.  Compact representation of wall-bounded turbulence using compressive sampling , 2014 .

[14]  Jens Pfeiffer,et al.  Closed-loop active flow control for road vehicles under unsteady cross-wind conditions , 2016 .

[15]  Constantine Kotropoulos,et al.  Music Genre Classification Using Locality Preserving Non-Negative Tensor Factorization and Sparse Representations , 2009, ISMIR.

[16]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[17]  G. Karniadakis,et al.  Efficient sensor placement for ocean measurements using low-dimensional concepts , 2009 .

[18]  Daniel Rueckert,et al.  Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling , 2013, NeuroImage.

[19]  Steven L. Brunton,et al.  Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems , 2013, SIAM J. Appl. Dyn. Syst..

[20]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[21]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[22]  Giancarlo Rufino,et al.  Ship heading and velocity analysis by wake detection in SAR images , 2016 .

[23]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[24]  Hisham Abou-Kandil,et al.  Observable Dictionary Learning for High-Dimensional Statistical Inference , 2017, Archives of Computational Methods in Engineering.

[25]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[26]  Daoqiang Zhang,et al.  Ensemble sparse classification of Alzheimer's disease , 2012, NeuroImage.

[27]  Mark N. Glauser,et al.  Towards practical flow sensing and control via POD and LSE based low-dimensional tools , 2004 .

[28]  Y. Fraigneau,et al.  A Reconstruction Method for the Flow Past an Open Cavity , 2006 .

[29]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[30]  Ronald Adrian,et al.  On the role of conditional averages in turbulence theory. , 1975 .

[31]  Nooshin Nabizadeh,et al.  Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features , 2015, Comput. Electr. Eng..

[32]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[33]  Nathan E. Murray,et al.  An application of Gappy POD , 2006 .

[34]  Maria-Vittoria Salvetti,et al.  A non-linear observer for unsteady three-dimensional flows , 2008, J. Comput. Phys..

[35]  F. Browand,et al.  Vortex pairing : the mechanism of turbulent mixing-layer growth at moderate Reynolds number , 1974, Journal of Fluid Mechanics.

[36]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[37]  Redouane Lguensat,et al.  The Analog Data Assimilation , 2017 .

[38]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[39]  J. Hesthaven,et al.  A Flow Field Reconstruction Method Using Artificial Neural Network , 2018 .

[40]  Nathan E. Murray,et al.  Estimation of the flowfield from surface pressure measurements in an open cavity , 2003 .

[41]  Steven L. Brunton,et al.  Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns , 2017, IEEE Control Systems.

[42]  Tim Colonius,et al.  Finite-volume WENO scheme for viscous compressible multicomponent flows , 2014, J. Comput. Phys..

[43]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[44]  Mark N. Glauser,et al.  APPLICATIONS OF STOCHASTIC ESTIMATION IN THE AXISYMMETRIC SUDDEN EXPANSION , 1998 .

[45]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[46]  Qi Song,et al.  Dynamic Surface Pressure Based Estimation for Flow Control , 2008 .

[47]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[48]  P. Varshney,et al.  Low-Dimensional Approach for Reconstruction of Airfoil Data via Compressive Sensing , 2015 .

[49]  R. Maurya Characteristics and Control of Low Temperature Combustion Engines , 2018 .

[50]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[51]  K. Taira,et al.  Super-resolution reconstruction of turbulent flows with machine learning , 2018, Journal of Fluid Mechanics.

[52]  Steven L. Brunton,et al.  Data-Driven Science and Engineering , 2019 .

[53]  Mark N. Glauser,et al.  Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure , 1994 .

[54]  M Esfahanian,et al.  Sparse representation for classification of dolphin whistles by type. , 2014, The Journal of the Acoustical Society of America.

[55]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[56]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[57]  Peter J. Schmid,et al.  Linear Closed-Loop Control of Fluid Instabilities and Noise-Induced Perturbations: A Review of Approaches and Tools , 2016 .

[58]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[59]  Ronald Adrian,et al.  Higher‐order estimates of conditional eddies in isotropic turbulence , 1980 .

[60]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[61]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[62]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[63]  Steven L. Brunton,et al.  Intracycle angular velocity control of cross-flow turbines , 2016, Nature Energy.

[64]  Steven L. Brunton,et al.  Data-Driven Sparse Sensor Placement , 2017, ArXiv.

[65]  Pierre Sagaut,et al.  Optimal sensor placement for variational data assimilation of unsteady flows past a rotationally oscillating cylinder , 2017, Journal of Fluid Mechanics.

[66]  S. Obayashi,et al.  Assessment of probability density function based on POD reduced-order model for ensemble-based data assimilation , 2015 .

[67]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[68]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[69]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[70]  Steven L. Brunton,et al.  Sparse reduced-order modelling: sensor-based dynamics to full-state estimation , 2017, Journal of Fluid Mechanics.

[71]  Ahmed Naguib,et al.  Stochastic estimation of a separated-flow field using wall-pressure-array measurements , 2007 .

[72]  Joseph H. Citriniti,et al.  Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer , 1999 .

[73]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[74]  Alison L. Marsden,et al.  Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery , 2012, Annals of Biomedical Engineering.

[75]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[76]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[77]  Yann Guezennec,et al.  Stochastic estimation of coherent structures in turbulent boundary layers , 1989 .

[78]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[79]  George E. Karniadakis,et al.  A Reconstruction Method for Gappy and Noisy Arterial Flow Data , 2007, IEEE Transactions on Medical Imaging.

[80]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[81]  Karthik Duraisamy,et al.  Turbulence Modeling in the Age of Data , 2018, Annual Review of Fluid Mechanics.

[82]  Clarence W. Rowley,et al.  Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields , 2013 .

[83]  T. Colonius,et al.  A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions , 2008 .

[84]  Mark N. Glauser,et al.  Proportional Closed-Loop Feedback Control of Flow Separation , 2007 .

[85]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[86]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[87]  Jonathan W. Naughton,et al.  Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow , 2010 .

[88]  Tim Colonius,et al.  Ensemble-Based State Estimator for Aerodynamic Flows , 2018, AIAA Journal.

[89]  Steven L. Brunton,et al.  A Unified Framework for Sparse Relaxed Regularized Regression: SR3 , 2018, IEEE Access.

[90]  Xun Huang,et al.  Compressive Sensing and Reconstruction in Measurements with an Aerospace Application , 2013 .

[91]  Volker Mehrmann,et al.  The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena , 2015, SIAM J. Sci. Comput..

[92]  Dominique Heitz,et al.  A particle filter to reconstruct a free-surface flow from a depth camera , 2015 .

[93]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[94]  E.J. Candes Compressive Sampling , 2022 .

[95]  J. Kutz,et al.  Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements , 2013 .

[96]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[97]  Steven L. Brunton,et al.  Sparse Relaxed Regularized Regression: SR3 , 2018, ArXiv.

[98]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[99]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[100]  Charles E. Tinney,et al.  On spectral linear stochastic estimation , 2006 .

[101]  A. Naguib,et al.  Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer , 2001 .

[102]  Takao Suzuki Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation , 2012, Journal of Fluid Mechanics.

[103]  Peter J. Schmid,et al.  Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil , 2017 .

[104]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[105]  Stéphane Mallat,et al.  Understanding deep convolutional networks , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[106]  A. Hussain Role of coherent structures in turbulent shear flows , 1981, Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences.

[107]  Karthikeyan Duraisamy,et al.  Machine Learning Methods for Data-Driven Turbulence Modeling , 2015 .

[108]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[109]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[110]  Zhizhen Zhao,et al.  Analog forecasting with dynamics-adapted kernels , 2014, 1412.3831.

[111]  Guang Lin,et al.  Classification of Spatiotemporal Data via Asynchronous Sparse Sampling: Application to Flow around a Cylinder , 2015, Multiscale Model. Simul..

[112]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[113]  Petros Boufounos,et al.  Sparse Sensing and DMD-Based Identification of Flow Regimes and Bifurcations in Complex Flows , 2015, SIAM J. Appl. Dyn. Syst..

[114]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[115]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[116]  Ronald Adrian,et al.  Conditional eddies in isotropic turbulence , 1979 .

[117]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[118]  Peter J. Schmid,et al.  A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction , 2014, Journal of Fluid Mechanics.

[119]  Michael Elad,et al.  Image Denoising Via Learned Dictionaries and Sparse representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[120]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[121]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  J. Nathan Kutz,et al.  Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2013 .

[123]  Daniele Venturi,et al.  Gappy data and reconstruction procedures for flow past a cylinder , 2004, Journal of Fluid Mechanics.

[124]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[125]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[126]  Steven L. Brunton,et al.  Constrained sparse Galerkin regression , 2016, Journal of Fluid Mechanics.