Nuclear technology aspects of ITER vessel-mounted diagnostics

ITER has diagnostics with machine protection, basic and advanced control, and physics roles. Several are distributed on the inner and outer periphery of the vacuum vessel. They have reduced maintainability compared to diagnostics in ports. They also endure some of the highest nuclear and EM loads of any diagnostic for the longest time. They include:

[1]  E. Hodgson,et al.  In situ in-reactor testing of potential bolometer materials for ITER plasma diagnostics , 2007 .

[2]  Roman Holyaka,et al.  Performance of Hall Sensor-Based Devices for Magnetic Field Diagnosis at Fusion Reactors , 2007 .

[3]  M. Yamauchi,et al.  Engineering design of the ITER invessel neutron monitor using micro-fission chambers , 2007 .

[4]  L. D. Horton,et al.  The ITER bolometer diagnostic: status and plans. , 2008, The Review of scientific instruments.

[5]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[6]  L. Giannone,et al.  Prototype of a radiation hard resistive bolometer for ITER , 2005 .

[7]  B. Peterson,et al.  Development of imaging bolometers for magnetic fusion reactors (invited). , 2008, The Review of scientific instruments.

[8]  M. Weber,et al.  Induced voltages and currents in copper and stainless steel core mineral insulated cables due to radiation and thermal gradients , 2007 .

[9]  K. F. Mast,et al.  Bolometer for ITER , 1996 .

[10]  C. Andelfinger,et al.  A Low Noise Highly Integrated Bolometer Array for Absolute Measurement of VUV and Soft X Radiation , 1991 .

[11]  Yoshihiko Imanaka,et al.  Multilayered low temperature cofired ceramics (LTCC) technology , 2004 .

[12]  Giuseppe Chitarin,et al.  Technology developments for ITER in-vessel equilibrium magnetic sensors , 2009 .

[13]  Henrik Bindslev,et al.  Chapter 7: Diagnostics , 2007 .

[14]  George Vayakis,et al.  Integration of ITER in-vessel diagnostic components in the vacuum vessel , 2009 .

[15]  Kentaro Toh,et al.  Irradiation test of diagnostic components for ITER application in the Japan Materials Testing Reactor , 2003 .

[16]  E. Hodgson,et al.  Radiation resistant bolometers with Al2O3 and AlN substrates, anodized aluminium support frames, and improved electrical contacts , 2009 .

[17]  T. Nishitani,et al.  Design of microfission chamber for ITER operations. , 2008, The Review of scientific instruments.

[18]  Hargsoon Yoon,et al.  Design of a stacked array antenna system integrated with low temperature co-fired ceramics (LTCC) , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  H. G. Lee,et al.  In-vessel design of ITER diagnostic neutron activation system. , 2008, The Review of scientific instruments.

[21]  R. Forrest,et al.  Operational Radioactivity Evaluation of ITER Diagnostic Neutron Activation System , 2009, IEEE Transactions on Plasma Science.

[22]  文男 内木場,et al.  Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, 著者 Yoshihiko Imanaka, 出版社 Springer Science+Business Media Inc./USA, 発行年 2005年, ISBN 0-387-23130-7, $129.00 , 2005 .

[23]  E. R. Hodgson,et al.  A TIEMF model and some implications for ITER magnetic diagnostics , 2009 .

[24]  George Vayakis,et al.  Radiation-induced thermoelectric sensitivity in the mineral-insulated cable of magnetic diagnostic coils for ITER , 2004 .

[25]  Peter E.Stott,et al.  Diagnostics for Experimental Thermonuclear Fusion Reactors 2 , 2012 .

[26]  V. I. Belousov,et al.  Status and prospects for mm-wave reflectometry in ITER , 2006 .

[27]  L. C. Ingesson,et al.  Chapter 7: Tomography Diagnostics: Bolometry and Soft-X-Ray Detection , 2008 .

[28]  E. R. Hodgson,et al.  Chapter 12: Generic Diagnostic Issues for a Burning Plasma Experiment , 2008 .

[29]  R. Forrest,et al.  Operational activity evaluation of ITER diagnostic neutron activation system , 2009, 2009 23rd IEEE/NPSS Symposium on Fusion Engineering.