Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide

Atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are attractive materials for next-generation nanoscale optoelectronic applications. Understanding the nanoscale optical behavior of the edges and grain boundaries of synthetically grown TMDCs is vital for optimizing their optoelectronic properties. Elucidating the nanoscale optical properties of 2D materials through far-field optical microscopy requires a diffraction-limited optical beam diameter that is submicrometer in size. Herein, we present our experimental work on the spatial photoluminescence (PL) scanning of large-size (≥50-μm) monolayer MoS2 grown by chemical vapor deposition (CVD) using a diffraction-limited blue laser beam spot (wavelength = 405 nm) with a beam diameter as small as ∼200 nm, allowing nanoscale excitonic phenomena that had not observed before to be probed. We found several important features: (i) There exists a submicrometer-width strip (∼500 nm) along the edges that fluoresces ∼1000% brighter than the ...

[1]  Chang-Hee Cho,et al.  Effect of interlayer interactions on exciton luminescence in atomic-layered MoS2 crystals , 2016, Scientific Reports.

[2]  Lei Zhang,et al.  Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures , 2016, Nature Communications.

[3]  M. S. Jeong,et al.  Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. , 2016, ACS nano.

[4]  J. Furdyna,et al.  Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers. , 2016, ACS nano.

[5]  S. Chae,et al.  Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries , 2016, Nature Communications.

[6]  Signe S. Grønborg,et al.  Synthesis of Epitaxial Single-Layer MoS2 on Au(111). , 2015, Langmuir : the ACS journal of surfaces and colloids.

[7]  Sefaattin Tongay,et al.  Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide , 2015, Nature Communications.

[8]  E. Pop,et al.  High mobility in monolayer MoS2 devices grown by chemical vapor deposition , 2015, 2015 73rd Annual Device Research Conference (DRC).

[9]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[10]  Robert Schneider,et al.  Single-photon emission from localized excitons in an atomically thin semiconductor , 2015 .

[11]  K. Loh,et al.  Two-dimensional dichalcogenides for light-harvesting applications , 2015 .

[12]  A. Morpurgo,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[13]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[14]  A. Majumdar,et al.  Ultra-Low Threshold Monolayer Semiconductor Nanocavity Lasers , 2015, 1502.01973.

[15]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[16]  Bin Yu,et al.  Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. , 2015, ACS nano.

[17]  Qiang Sun,et al.  Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. , 2015, Nano letters.

[18]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[19]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[20]  Jian-Wei Pan,et al.  Single quantum emitters in monolayer semiconductors. , 2014, Nature nanotechnology.

[21]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[22]  Shih‐Yang Lin,et al.  Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons , 2014, Scientific Reports.

[23]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[24]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[25]  R. Ruoff,et al.  Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. , 2014, Nano letters (Print).

[26]  F. Miao,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[27]  Wanlin Guo,et al.  Generating electricity by moving a droplet of ionic liquid along graphene. , 2014, Nature nanotechnology.

[28]  A. Burger,et al.  Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.

[29]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[30]  Robert M. Wallace,et al.  MoS2 functionalization for ultra-thin atomic layer deposited dielectrics , 2014 .

[31]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[32]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[33]  Bin Wang,et al.  Enhanced chemical reactions of oxygen at grain boundaries in polycrystalline graphene , 2013 .

[34]  Harold S. Park,et al.  Density functional theory calculation of edge stresses in monolayer MoS2 , 2013, 1310.6693.

[35]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[36]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[37]  L. Lauhon,et al.  Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy , 2013, 1307.5032.

[38]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[39]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[40]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[41]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[42]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[43]  T. Ohta,et al.  Facile growth of monolayer MoS2 film areas on SiO2 , 2013 .

[44]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[45]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[46]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[47]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[48]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[49]  J. Kong,et al.  Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition , 2012, 2012 International Electron Devices Meeting.

[50]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[51]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[52]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[53]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[54]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[55]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[56]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[57]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[58]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[59]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[60]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[61]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[62]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[63]  Rui Huang,et al.  Excess energy and deformation along free edges of graphene nanoribbons , 2009, 0910.0912.

[64]  J. Nørskov,et al.  Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects , 2008 .

[65]  Jens K. Nørskov,et al.  The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study , 2007 .

[66]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[67]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[68]  J. Nørskov,et al.  One-dimensional metallic edge states in MoS2. , 2001, Physical review letters.

[69]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.

[70]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[74]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.