Coding by minimal linear grammars

Abstract This paper concerns the structure and the properties of a special class of combinatorial systems called minimal linear grammars. The role of unambiguous minimal linear grammars is investigated in the framework of the information transmission and coding problem and some related issues.

[1]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..

[2]  Aldo de Luca A Conjecture on Continued Fractions , 1998, Theor. Comput. Sci..

[3]  Antonio Restivo,et al.  On codes having no finite completions , 1977, Discret. Math..

[4]  Antonio Restivo A note on multiset decipherable codes , 1989, IEEE Trans. Inf. Theory.

[5]  Antonio Restivo,et al.  Minimal Complete Sets of Words , 1980, Theor. Comput. Sci..

[6]  Fernando Guzmán,et al.  Decipherability of codes , 1999 .

[7]  Aldo de Luca Some combinatorial results on Bernoulli sets and codes , 2002, Theor. Comput. Sci..

[8]  Flavio D'Alessandro,et al.  On the Commutative Equivalence of Context-Free Languages , 2018, DLT.

[9]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[10]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..

[11]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[12]  Aldo de Luca Some decompositions of Bernoulli sets and codes , 2005, RAIRO Theor. Informatics Appl..

[13]  Abraham Lempel On multiset decipherable codes , 1986, IEEE Trans. Inf. Theory.

[14]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[15]  Antonio Restivo,et al.  Varieties of Codes and Kraft Inequality , 2006, Theory of Computing Systems.

[16]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[17]  Tero Harju,et al.  Counting bordered and primitive words with a fixed weight , 2005, Theor. Comput. Sci..

[18]  Peter W. Shor,et al.  A Counterexample to the Triangle Conjecture , 1985, J. Comb. Theory A.

[19]  Aldo de Luca,et al.  Completions in measure of languages and related combinatorial problems , 2005, Theor. Comput. Sci..

[20]  Benedetto Intrigila,et al.  On the commutative equivalence of semi-linear sets of Nk , 2015, Theor. Comput. Sci..

[21]  Flavio D'Alessandro,et al.  On the Commutative Equivalence of Bounded Semi-linear Codes , 2019, WORDS.

[22]  Sheila A. Greibach,et al.  The Undecidability of the Ambiguity Problem for Minimal Linear Grammars , 1963, Inf. Control..

[23]  Antonio Restivo,et al.  Coding Partitions of Regular Sets , 2009, Int. J. Algebra Comput..

[24]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[25]  Maurice Gross Inherent Ambiguity of Minimal Linear Grammars , 1964, Inf. Control..