A model predictive control framework for industrial turbodiesel engine control

This article describes the development and implementation of a practical explicit model predictive control (MPC) approach that allows subcontrollers to receive and accommodate time-varying setpoints and constraints from higher levels in standard industrial automotive controller hierarchies. The MPC approach requires a small computational footprint that is suitable for implementation within a modern electronic control unit (ECU). This article presents the approach, method of implementation, and preliminary results on a 2.2 litre turbodiesel engine.

[1]  Christoph Michael Schär Control of a selective catalytic reduction process , 2003 .

[2]  Manfred Morari,et al.  Offset free model predictive control , 2007, 2007 46th IEEE Conference on Decision and Control.

[3]  Rolf Findeisen,et al.  Nonlinear model predictive control of a turbocharged diesel engine , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[4]  Lino Guzzella,et al.  Introduction to Modeling and Control of Internal Combustion Engine Systems , 2004 .

[5]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[6]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[7]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[8]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[9]  Fpt Frank Willems,et al.  Optimization of urea SCR deNOx systems for HD diesel engines , 2004 .

[10]  Keith Glover,et al.  Control-oriented linear parameter-varying modelling of a turbocharged diesel engine , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[11]  Gabriele Pannocchia,et al.  Disturbance models for offset‐free model‐predictive control , 2003 .

[12]  L. Guzzella,et al.  Emission-controlled diesel engines , 2007 .

[13]  T. Keviczky,et al.  Flight test of a receding horizon controller for autonomous UAV guidance , 2005, Proceedings of the 2005, American Control Conference, 2005..

[14]  Mrdjan J. Jankovic,et al.  EGR-VGT control schemes: experimental comparison for a high-speed diesel engine , 2000 .

[15]  Thomas Zurawka,et al.  Automotive Software Engineering: Principles, Processes, Methods, and Tools , 2005 .

[16]  L. del Re,et al.  Gain Scheduled $H_{\infty}$ Control for Air Path Systems of Diesel Engines Using LPV Techniques , 2007, IEEE Transactions on Control Systems Technology.

[17]  Lino Guzzella,et al.  Real-time model for the prediction of the NOx emissions in DI diesel engines , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[18]  Hans Bock,et al.  An Online Active Set Strategy for Fast Parametric Quadratic Programming in MPC Applications , 2006 .

[19]  Ilya V. Kolmanovsky,et al.  Control of variable geometry turbocharged diesel engines for reduced emissions , 2000, IEEE Trans. Control. Syst. Technol..

[20]  Luigi del Re,et al.  Predictive Control of a Diesel Engine Air Path , 2007, IEEE Transactions on Control Systems Technology.

[21]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[22]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[23]  Frank Willems,et al.  Appliance of high EGR rates with a short and long route EGR system on a Heavy Duty diesel engine , 2007 .

[24]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .