Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

[1]  M. Neviere,et al.  About the theory of optical grating coupler-waveguide systems , 1973 .

[2]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[3]  P. Barber Absorption and scattering of light by small particles , 1984 .

[4]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[5]  Dennis G. Hall,et al.  Enhanced Dipole-Dipole Interaction between Elementary Radiators Near a Surface , 1998 .

[6]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[7]  C. Ballif,et al.  Plasmonic absorption in textured silver back reflectors of thin film solar cells , 2008 .

[8]  Miro Zeman,et al.  Diffraction Gratings for Light Trapping in Thin-Film Silicon Solar Cells , 2008 .

[9]  C. Ballif,et al.  N/I buffer layer for substrate microcrystalline thin film silicon solar cell , 2008 .

[10]  H. Huang,et al.  Synthesis and characterization of core-shell structural MWNT-zirconia nanocomposites. , 2008, Nano letters.

[11]  R. Schropp,et al.  Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells , 2009 .

[12]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[13]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[14]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[15]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[16]  W. Soppe,et al.  Roll to roll fabrication of thin film silicon solar cells on nano-textured substrates. , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[17]  A. Boudrioua Optical Waveguide Theory , 2010 .

[18]  R. J. Black,et al.  Optical Waveguide Modes: Polarization, Coupling and Symmetry , 2010 .

[19]  C. Battaglia,et al.  Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting , 2010 .

[20]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[21]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[22]  M. Meier,et al.  Plasmonic reflection grating back contacts for microcrystalline silicon solar cells , 2011 .

[23]  Vikram L. Dalal,et al.  A photonic-plasmonic structure for enhancing light absorption in thin film solar cells , 2011 .

[24]  C. Battaglia,et al.  Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells , 2011 .

[25]  Vasundara V. Varadan,et al.  Exploration of nano-element array architectures for substrate solar cells using an a-Si:H absorber , 2012 .

[26]  K. Catchpole,et al.  Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells , 2012 .

[27]  A. Polman,et al.  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[28]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[29]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[30]  M. Zeman,et al.  Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. , 2012, Nano letters.

[31]  J. Krč,et al.  Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)S2 solar cells , 2013 .

[32]  M. Soldera,et al.  Geometric Light Trapping in 2D and 3D Structured Small Molecule Organic Solar Cells , 2013 .

[33]  A. Polman,et al.  Dielectric back scattering patterns for light trapping in thin-film Si solar cells. , 2013, Optics express.

[34]  John A. Rogers,et al.  Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells , 2013 .

[35]  A. Polman,et al.  Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination , 2013 .

[36]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[37]  Q. Shen,et al.  Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings? , 2014, Applied optics.

[38]  M. V. Lare Light trapping in thin-film solar cells using dielectric and metallic nanostructures , 2014 .

[39]  A. Polman,et al.  Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers , 2014, IEEE Journal of Photovoltaics.