Heterogenous void growth revealed by in situ 3-D X-ray mocrotomography using automatic cavity tracking

Ductile fracture by nucleation, growth and coalescence of internal voids is the dominant fracture mechanism in metals at ambient temperature. Micromechanics-based models for each elementary mechanism have been developed and enhanced over the past 40 years, allowing microstructure-informed failure predictions essentially assuming homogeneous damage evolution. In situ 3-D microtomography has been instrumental to assess these models from experimental evolution of average void density and size. Nevertheless, statistical effects on the damage evolution associated with microstructure distribution heterogeneities have not yet been addressed quantitatively due to the difficulty in tracking individual cavities. Here, we show, from 3-D in situ microtomography characterization of a Ti–6Al–4V alloy, factor 4 variations among the growth rate of individual cavities undergoing the same stress triaxiality and same plastic deformation. This statistical analysis has been made possible owing to an advanced tracking algorithm relying on a graph-based data association approach initially developed for the field of computer vision to track target motions. The measured variations originate from void shape and crystal orientation effects, as well as from local constraints changes due to the presence of two phases with different strengths.

[1]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[2]  A. Benzerga,et al.  An approximate yield criterion for anisotropic porous media , 2008 .

[3]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[4]  V. Tvergaard Interaction of very small voids with larger voids , 1998 .

[5]  J. Leblond,et al.  A criterion for the onset of void coalescence under combined tension and shear , 2012 .

[6]  Jacques Besson,et al.  Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effect , 1997 .

[7]  T. Pardoen,et al.  Growth and coalescence of penny-shaped voids in metallic alloys , 2006 .

[8]  E. Maire,et al.  Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography , 2008 .

[9]  Deutsche Gesellschaft für Zerstörungsfreie Prüfung,et al.  Defect assessment in components : fundamentals and applications , 1991 .

[10]  Yonggang Huang The role of nonuniform particle distribution in plastic flow localization , 1993 .

[11]  Peter Cloetens,et al.  Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography , 1999 .

[12]  Liza Lecarme,et al.  Void growth and coalescence in ductile solids with stage III and stage IV strain hardening , 2011 .

[13]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[14]  E. Maire,et al.  Ductile damage in aluminium alloy thin sheets: Correlation between micro-tomography observations and mechanical modeling , 2012 .

[15]  Y. Bréchet,et al.  Ductile fracture initiated by interface nucleation in two-phase elastoplastic systems , 2013 .

[16]  Y. Bréchet,et al.  Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys , 2004 .

[17]  A. K. Pilkey,et al.  Damage characterization and damage percolation modelling in aluminum alloy sheet , 2000 .

[18]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[19]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[20]  J. Segurado,et al.  A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites , 2005 .

[21]  F. Delannay,et al.  Micromechanics of room and high temperature fracture in 6xxx Al alloys , 2007 .

[22]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[23]  P. Thomason,et al.  Ductile Fracture of Metals , 1990 .

[24]  A. Sherry,et al.  The characterization and interpretation of ductile fracture mechanisms in AL2024-T351 using X-ray and focused ion beam tomography , 2012 .

[25]  D. Fabrègue,et al.  A constitutive model for elastoplastic solids containing primary and secondary voids , 2008 .

[26]  V. Tvergaard,et al.  Growth and coalescence of non-spherical voids in metals deformed at elevated temperature , 2003 .

[27]  Wanlin Guo,et al.  The influence of plasticity mismatch on the growth and coalescence of spheroidal voids on the bimaterial interface , 2002 .

[28]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[29]  R. Lebensohn,et al.  Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals , 2012 .

[30]  Thomas Pardoen,et al.  A micromechanics based damage model for composite materials , 2010 .

[31]  F. M. Beremin Cavity formation from inclusions in ductile fracture of A508 steel , 1981 .

[32]  P. Suquet,et al.  Exact results and approximate models for porous viscoplastic solids , 1994 .

[33]  K. L. Nielsen,et al.  Modelling of plastic flow localisation and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law , 2010 .

[34]  Jacques Besson,et al.  Micromechanical modeling of the behavior of duplex stainless steels , 1999 .

[35]  Yonggang Huang,et al.  Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields , 1991 .

[36]  Mark F. Horstemeyer,et al.  Lattice orientation effects on void growth and coalescence in fcc single crystals , 2006 .

[37]  Jacques Besson,et al.  An extension of the Green and Gurson models to kinematic hardening , 2003 .

[38]  R. Asaro,et al.  A study of void nucleation, growth, and coalescence in spheroidized 1518 steel , 1990 .

[39]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[40]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[41]  A. A. Benzerga Micromechanics of coalescence in ductile fracture , 2002 .

[42]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[43]  F. Mudry,et al.  Ductile rupture of A508 steel under nonradial loading , 1985 .

[44]  A. Deschamps,et al.  Grain boundary versus transgranular ductile failure , 2003 .

[45]  R. Becker,et al.  An analysis of ductile failure by grain boundary void growth , 1989 .

[46]  Thomas Pardoen,et al.  Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys , 2005 .

[47]  D. Chae,et al.  Damage accumulation and failure of HSLA-100 steel , 2004 .

[48]  Zhiliang Zhang,et al.  A new failure criterion for the Gurson-Tvergaard dilational constitutive model , 1994 .

[49]  K. L. Nielsen,et al.  Micro-mechanical modelling of ductile failure in 6005A aluminium using a physics based strain hardening law including stage IV , 2010 .

[50]  Thomas Pardoen,et al.  Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties , 2012 .

[51]  Alan Needleman,et al.  An analysis of void distribution effects on plastic flow in porous solids , 1990 .

[52]  F. Delannay,et al.  Assessment of void growth models from porosity measurements in cold-drawn copper bars , 1998 .

[53]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[54]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[55]  P. Onck,et al.  Multiscale modeling of ductile failure in metallic alloys , 2010 .

[56]  Thomas Pardoen,et al.  The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension , 2011 .

[57]  Jwo Pan,et al.  Approximate yield criteria for anisotropic porous ductile sheet metals , 1997 .

[58]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[59]  A. K. Pilkey,et al.  Void coalescence within periodic clusters of particles , 2003 .

[60]  E. Maire,et al.  Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels , 2011 .