Tuning the dials of Synthetic Biology

Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others.

[1]  M. Lehmann,et al.  Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. , 2001, Current opinion in biotechnology.

[2]  Nigel Chaffey,et al.  Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. , 2003 .

[3]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[4]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[5]  S. K. Desai,et al.  Synthetic Riboswitches That Induce Gene Expression in Diverse Bacterial Species , 2010, Applied and Environmental Microbiology.

[6]  Wendell A Lim,et al.  Cell biology 2.0. , 2012, Trends in cell biology.

[7]  M Bjerknes,et al.  Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. , 1994, Nucleic acids research.

[8]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[9]  Young-Jun Choi,et al.  Multicopy Integration and Expression of Heterologous Genes in Methylobacterium extorquens ATCC 55366 , 2006, Applied and Environmental Microbiology.

[10]  S. Lin-Chao,et al.  High copy number of the pUC plasmid results from a Rom/Rop‐suppressible point mutation in RNA II , 1992, Molecular microbiology.

[11]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[12]  R. Singer,et al.  In Vivo Imaging of Labelled Endogenous β-actin mRNA During Nucleocytoplasmic Transport , 2010, Nature.

[13]  大野 茂,et al.  Polarization , 2006, A First Course in Laboratory Optics.

[14]  Eric Klavins,et al.  Fine-tuning gene networks using simple sequence repeats , 2012, Proceedings of the National Academy of Sciences.

[15]  T. Muir,et al.  Development of a tandem protein trans-splicing system based on native and engineered split inteins. , 2005, Journal of the American Chemical Society.

[16]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[17]  Rob Phillips,et al.  Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli , 2012, PLoS Comput. Biol..

[18]  K. Hammer,et al.  The Sequence of Spacers between the Consensus Sequences Modulates the Strength of Prokaryotic Promoters , 1998, Applied and Environmental Microbiology.

[19]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[20]  K. Matthews,et al.  Combinatorial Mutations of lac Repressor , 1997, The Journal of Biological Chemistry.

[21]  S. Klumpp Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control , 2011, PloS one.

[22]  James J. Collins,et al.  Iterative plug-and-play methodology for constructing and modifying synthetic gene networks , 2012, Nature Methods.

[23]  J. Kittleson,et al.  Rapid optimization of gene dosage in E. coli using DIAL strains , 2011, Journal of biological engineering.

[24]  H. Nijkamp,et al.  Isolation and Characterization of a Copy Mutant of the Bacteriocinogenic Plasmid Clo DF13 , 1974, Journal of bacteriology.

[25]  Anthony J. Wilkinson,et al.  Protein engineering 20 years on , 2002, Nature Reviews Molecular Cell Biology.

[26]  R. Schleif Regulation of the L-arabinose operon of Escherichia coli. , 2000, Trends in genetics : TIG.

[27]  S. Karamanou,et al.  Bacterial protein secretion through the translocase nanomachine , 2007, Nature Reviews Microbiology.

[28]  N. Panayotatos DNA replication regulated by the priming promoter. , 1984, Nucleic acids research.

[29]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[30]  Doheon Lee,et al.  Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes , 2010, BMC Systems Biology.

[31]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[32]  Drew Endy,et al.  Measuring the activity of BioBrick promoters using an in vivo reference standard , 2009, Journal of biological engineering.

[33]  P. Stadler,et al.  De novo design of a synthetic riboswitch that regulates transcription termination , 2012, Nucleic acids research.

[34]  Juhyun Kim,et al.  The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes , 2012, Nucleic Acids Res..

[35]  Ziniu Yu,et al.  Determination of Plasmid Copy Number Reveals the Total Plasmid DNA Amount Is Greater than the Chromosomal DNA Amount in Bacillus thuringiensis YBT-1520 , 2011, PloS one.

[36]  Mauricio Barahona,et al.  Switchable genetic oscillator operating in quasi-stable mode , 2009, Journal of The Royal Society Interface.

[37]  E. Angov Codon usage: Nature's roadmap to expression and folding of proteins , 2011, Biotechnology journal.

[38]  U. Stahl,et al.  Replication of plasmids in gram-negative bacteria. , 1989, Microbiological reviews.

[39]  D. Agard,et al.  Engineering substrate specificity , 1991 .

[40]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[41]  R. Sauer,et al.  Recognition of misfolded proteins by Lon, a AAA(+) protease. , 2008, Genes & development.

[42]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[43]  J. Lippincott-Schwartz,et al.  Secretory pathway kinetics and in vivo analysis of protein traffic from the Golgi complex to the cell surface , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  K. Burrage,et al.  Stochastic models for regulatory networks of the genetic toggle switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Alan Villalobos,et al.  Design Parameters to Control Synthetic Gene Expression in Escherichia coli , 2009, PloS one.

[46]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[47]  V. Shingler,et al.  σ54-Promoter Discrimination and Regulation by ppGpp and DksA* , 2009, Journal of Biological Chemistry.

[48]  E. P. Greenberg,et al.  Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein , 2004, Journal of bacteriology.

[49]  A. Grossman,et al.  Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. , 1987, Genes & development.

[50]  T. Baker,et al.  Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Han N. Lim,et al.  Fundamental relationship between operon organization and gene expression , 2011, Proceedings of the National Academy of Sciences.

[52]  T. Liljefors,et al.  The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. , 2005, Microbiology.

[53]  K. Jensen,et al.  The RNA chain elongation rate in Escherichia coli depends on the growth rate , 1994, Journal of bacteriology.

[54]  O. Miller,et al.  rRNA transcription rate in Escherichia coli , 1991, Journal of bacteriology.

[55]  A. C. Chang,et al.  Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid , 1978, Journal of bacteriology.

[56]  J. Collins,et al.  DIVERSITY-BASED, MODEL-GUIDED CONSTRUCTION OF SYNTHETIC GENE NETWORKS WITH PREDICTED FUNCTIONS , 2009, Nature Biotechnology.

[57]  B. Martoglio,et al.  Signal sequences: more than just greasy peptides. , 1998, Trends in cell biology.

[58]  S. Busby,et al.  Activation and repression of transcription initiation in bacteria. , 2001, Essays in biochemistry.

[59]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[60]  Jeff Hasty,et al.  Delay-induced degrade-and-fire oscillations in small genetic circuits. , 2009, Physical review letters.

[61]  O Satya Lakshmi,et al.  Evolving Lac repressor for enhanced inducibility. , 2009, Protein engineering, design & selection : PEDS.

[62]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[63]  R. Sauer,et al.  Carboxy-terminal determinants of intracellular protein degradation. , 1990, Genes & development.

[64]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[65]  A. Pavko,et al.  Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR,PL promoters from phage lambda. , 2003, Biotechnology and bioengineering.

[66]  R. Weiss,et al.  Foundations for the design and implementation of synthetic genetic circuits , 2012, Nature Reviews Genetics.

[67]  Yan Gong,et al.  Automated design of genetic toggle switches with predetermined bistability. , 2012, ACS synthetic biology.

[68]  G. Stephanopoulos,et al.  Tuning genetic control through promoter engineering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  V. Arora,et al.  Overcoming mutation-based resistance to antiandrogens with rational drug design , 2013, eLife.

[70]  M. Elowitz,et al.  Programming gene expression with combinatorial promoters , 2007, Molecular systems biology.

[71]  M. Sekiguchi,et al.  Effect of dna mutations on the replication of plasmid pSC101 in Escherichia coli K-12 , 1979, Journal of bacteriology.

[72]  Christopher J. Rawlings,et al.  Graph-based analysis and visualization of experimental results with ONDEX , 2006, Bioinform..

[73]  Antonis Papachristodoulou,et al.  A loop shaping approach for designing biological circuits , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[74]  D. Helinski,et al.  Suppression of Co1E1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. , 1979, Journal of molecular biology.

[75]  G. Chang,et al.  Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer , 1996, Science.

[76]  Ilya A. Osterman,et al.  Comparison of mRNA features affecting translation initiation and reinitiation , 2012, Nucleic acids research.

[77]  David Tollervey,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009, Science.

[78]  Jeff Hasty,et al.  Genetic Circuits in Salmonella typhimurium , 2012, ACS synthetic biology.

[79]  Chase L. Beisel,et al.  Design Principles for Riboswitch Function , 2009, PLoS Comput. Biol..

[80]  Bernt Eric Uhlin,et al.  Runaway–Replication Plasmids as Tools to Produce Large Quantities of Proteins from Cloned Genes in Bacteria , 1992, Bio/Technology.

[81]  Wendell A. Lim,et al.  Designing Synthetic Regulatory Networks Capable of Self-Organizing Cell Polarization , 2012, Cell.

[82]  M. Yabuta,et al.  Thermo-inducible expression of a recombinant fusion protein by Escherichia coli lac repressor mutants. , 1995, Journal of biotechnology.

[83]  J. Gralla,et al.  MINIREVIEW The Bacterial Enhancer-Dependent s 54 ( s N ) Transcription Factor , 2000 .

[84]  T. Baker,et al.  ClpS modulates but is not essential for bacterial N-end rule degradation. , 2007, Genes & development.

[85]  Joseph H. Davis,et al.  Design, construction and characterization of a set of insulated bacterial promoters , 2010, Nucleic acids research.

[86]  Tom W Muir,et al.  Traceless protein splicing utilizing evolved split inteins , 2009, Proceedings of the National Academy of Sciences.

[87]  P. Bouloc,et al.  Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). , 1998, Genes & development.

[88]  W. Saenger,et al.  Structural basis of gene regulation by the tetracycline inducible Tet repressor–operator system , 2000, Nature Structural Biology.

[89]  N. Sternberg,et al.  Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[90]  J. Kirstein,et al.  Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases , 2009, Nature Reviews Microbiology.

[91]  Marc Dreyfus,et al.  AU-Rich Sequences within 5′ Untranslated Leaders Enhance Translation and Stabilize mRNA in Escherichia coli , 2005, Journal of bacteriology.

[92]  G. Phillips,et al.  New pSC101-derivative cloning vectors with elevated copy numbers. , 2008, Plasmid.

[93]  Elisa Michelini,et al.  Internal response correction for fluorescent whole-cell biosensors. , 2002, Analytical chemistry.

[94]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[95]  G. Mackie RNase E: at the interface of bacterial RNA processing and decay , 2012, Nature Reviews Microbiology.

[96]  K. Kaneko,et al.  The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches , 2009, Physical biology.

[97]  J. Belasco,et al.  Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coil , 1992, Nature.

[98]  Joshua S Weitz,et al.  Small-scale copy number variation and large-scale changes in gene expression , 2008, Proceedings of the National Academy of Sciences.

[99]  D. Endy,et al.  Refinement and standardization of synthetic biological parts and devices , 2008, Nature Biotechnology.

[100]  Ruth J. Williams,et al.  Queueing up for Enzymatic Processing: Correlated Signaling through Coupled Degradation , 2022 .

[101]  J. Micklefield,et al.  Reengineering orthogonally selective riboswitches , 2010, Proceedings of the National Academy of Sciences.

[102]  Jasmine Shong,et al.  Towards synthetic microbial consortia for bioprocessing. , 2012, Current opinion in biotechnology.

[103]  Stefanie Pöggeler,et al.  Inteins, valuable genetic elements in molecular biology and biotechnology , 2010, Applied Microbiology and Biotechnology.

[104]  Christopher A. Voigt,et al.  Genetic programs constructed from layered logic gates in single cells , 2012, Nature.

[105]  Peter J. Butterworth,et al.  Fundamentals of enzyme kinetics (3rd edn) A. Cornish-Bowden. Portland Press Ltd, London, 422 + xvi pp., ISBN 1 85578 158 1 (2000) , 2005 .

[106]  M Lanzer,et al.  Promoters largely determine the efficiency of repressor action. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. Schneider-Mergener,et al.  ClpS is an essential component of the N-end rule pathway in Escherichia coli , 2006, Nature.

[108]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[109]  Georgios Skretas,et al.  Regulation of protein activity with small‐molecule‐controlled inteins , 2005, Protein science : a publication of the Protein Society.

[110]  Olga Zhaxybayeva,et al.  Inteins: structure, function, and evolution. , 2002, Annual review of microbiology.

[111]  M. di Bernardo,et al.  A comparative analysis of synthetic genetic oscillators , 2010, Journal of The Royal Society Interface.

[112]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[113]  J. Yu,et al.  mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. , 1998, RNA.

[114]  H. Bujard,et al.  Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. , 1986, The EMBO journal.

[115]  T. Muir,et al.  Protein splicing triggered by a small molecule. , 2002, Journal of the American Chemical Society.

[116]  Sergio Contrino,et al.  InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data , 2012, Bioinform..

[117]  Leemor Joshua-Tor,et al.  Strategies for protein coexpression in Escherichia coli , 2006, Nature Methods.

[118]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter σS dependent? Role of the −13/−14 nucleotide promoter positions and region 2.5 of σS , 2001 .

[119]  Cameron Neylon,et al.  Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. , 2004, Nucleic acids research.

[120]  Declan G. Bates,et al.  Feedback Control in Systems Biology , 2011 .

[121]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[122]  Mauricio Barahona,et al.  Squeeze-and-breathe evolutionary Monte Carlo optimization with local search acceleration and its application to parameter fitting , 2011, Journal of The Royal Society Interface.

[123]  Sarah F. Newbury,et al.  Differential mRNA stability controls relative gene expression within a polycistronic operon , 1987, Cell.

[124]  L. Poulsen,et al.  New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria , 1998, Applied and Environmental Microbiology.

[125]  K. Gerdes,et al.  Plasmid segregation mechanisms. , 2005, Annual review of genetics.

[126]  P. Morcos Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. , 2007, Biochemical and biophysical research communications.

[127]  R. Raghavan,et al.  Group I Introns and Inteins: Disparate Origins but Convergent Parasitic Strategies , 2009, Journal of bacteriology.

[128]  David J. Studholme,et al.  The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor , 2000, Journal of bacteriology.

[129]  J. Inselburg,et al.  ColE1 copy number mutants , 1982, Journal of bacteriology.

[130]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[131]  A. Malcolm Campbell,et al.  Improving the Lac System for Synthetic Biology , 2010 .

[132]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[133]  J. Hoskins,et al.  Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[134]  A. Villaverde,et al.  Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature , 1993, Applied and environmental microbiology.

[135]  A. Horwich,et al.  ClpS, a substrate modulator of the ClpAP machine. , 2002, Molecular cell.

[136]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[137]  Robert T Sauer,et al.  Engineering controllable protein degradation. , 2006, Molecular cell.

[138]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[139]  Pamela A Silver,et al.  Intron length increases oscillatory periods of gene expression in animal cells. , 2008, Genes & development.

[140]  P. Dehaseth,et al.  Sigma 32-Dependent Promoter Activity In Vivo: Sequence Determinants of the groE Promoter , 2003, Journal of bacteriology.

[141]  J. Keasling,et al.  Controlling Messenger RNA Stability in Bacteria: Strategies for Engineering Gene Expression , 1997, Biotechnology progress.

[142]  Wayne M Patrick,et al.  Novel methods for directed evolution of enzymes: quality, not quantity. , 2004, Current opinion in biotechnology.

[143]  Marlene Oeffinger,et al.  To the pore and through the pore: a story of mRNA export kinetics. , 2012, Biochimica et biophysica acta.

[144]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[145]  B. Birren,et al.  Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[146]  J. Collins,et al.  Combinatorial promoter design for engineering noisy gene expression , 2007, Proceedings of the National Academy of Sciences.

[147]  Francine B. Perler,et al.  InBase: the Intein Database , 2002, Nucleic Acids Res..

[148]  James J. Collins,et al.  Genetic switchboard for synthetic biology applications , 2012, Proceedings of the National Academy of Sciences.

[149]  Don W. Green,et al.  Perry's chemical engineers' handbook. 7th ed. , 1997 .

[150]  Mario di Bernardo,et al.  Temperature dependence of ssrA-tag mediated protein degradation , 2012, Journal of Biological Engineering.

[151]  Mauricio Barahona,et al.  Engineering and ethical perspectives in synthetic biology Rigorous , robust and predictable designs , public engagement and a modern ethical framework are vital to the continued success of synthetic biology , 2012 .

[152]  Mauricio Barahona,et al.  A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals , 2013, Biosensors & bioelectronics.

[153]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[154]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[155]  W. Hillen,et al.  Tetracycline analogs affecting binding to Tn10-Encoded Tet repressor trigger the same mechanism of induction. , 1996, Biochemistry.

[156]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[157]  Michael J. Hansen,et al.  The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli , 1994, Molecular microbiology.

[158]  R. Sauer,et al.  Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Jae-Seong Yang,et al.  Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. , 2013, Metabolic engineering.

[160]  Richard M. Murray,et al.  Performance metrics for a biomolecular step response , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[161]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[162]  Paul S. Freemont,et al.  Computational design approaches and tools for synthetic biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.