Accurate appearance preserving prefiltering for rendering displacement-mapped surfaces

Prefiltering the reflectance of a displacement-mapped surface while preserving its overall appearance is challenging, as smoothing a displacement map causes complex changes of illumination effects such as shadowing-masking and interreflection. In this paper, we introduce a new method that prefilters displacement maps and BRDFs jointly and constructs SVBRDFs at reduced resolutions. These SVBRDFs preserve the appearance of the input models by capturing both shadowing-masking and interreflection effects. To express our appearance-preserving SVBRDFs efficiently, we leverage a new representation that involves spatially varying NDFs and a novel scaling function that accurately captures micro-scale changes of shadowing, masking, and interreflection effects. Further, we show that the 6D scaling function can be factorized into a 2D function of surface location and a 4D function of direction. By exploiting the smoothness of these functions, we develop a simple and efficient factorization method that does not require computing the full scaling function. The resulting functions can be represented at low resolutions (e.g., 42 for the spatial function and 154 for the angular function), leading to minimal additional storage. Our method generalizes well to different types of geometries beyond Gaussian surfaces. Models prefiltered using our approach at different scales can be combined to form mipmaps, allowing accurate and anti-aliased level-of-detail (LoD) rendering.

[1]  Jan Westerholm,et al.  Scalable Height Field Self‐Shadowing , 2010, Comput. Graph. Forum.

[2]  Pat Hanrahan,et al.  Multiple scattering from distributions of specular v-grooves , 2018, ACM Trans. Graph..

[3]  Pierre Poulin,et al.  Linear efficient antialiased displacement and reflectance mapping , 2013, ACM Trans. Graph..

[4]  Anat Levin,et al.  An Evaluation of Computational Imaging Techniques for Heterogeneous Inverse Scattering , 2016, ECCV.

[5]  Fabrice Neyret,et al.  A Survey of Nonlinear Prefiltering Methods for Efficient and Accurate Surface Shading , 2012, IEEE Transactions on Visualization and Computer Graphics.

[6]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[7]  Shi-Min Hu,et al.  Anisotropic spherical Gaussians , 2013, ACM Trans. Graph..

[8]  Carsten Dachsbacher,et al.  Multiple-scattering microfacet BSDFs with the Smith model , 2016, ACM Trans. Graph..

[9]  Holly E. Rushmeier,et al.  Eurographics Symposium on Rendering 2009 Characteristic Point Maps , 2022 .

[10]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[11]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[12]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[13]  Wan-Chun Ma,et al.  Level-of-detail representation of bidirectional texture functions for real-time rendering , 2005, I3D '05.

[14]  Anton Kaplanyan,et al.  Real-time rendering of procedural multiscale materials , 2016, I3D.

[15]  Holly E. Rushmeier,et al.  Physically-based interactive bi-scale material design , 2011, ACM Trans. Graph..

[16]  Stéphane Mérillou,et al.  A microfacet-based BRDF for the accurate and efficient rendering of high-definition specular normal maps , 2018, The Visual Computer.

[17]  Stephen Lin,et al.  Multiresolution reflectance filtering , 2005, EGSR '05.

[18]  Ravi Ramamoorthi,et al.  Interactive albedo editing in path-traced volumetric materials , 2013, TOGS.

[19]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[20]  Frédo Durand,et al.  Downsampling scattering parameters for rendering anisotropic media , 2016, ACM Trans. Graph..

[21]  Carsten Dachsbacher,et al.  The SGGX microflake distribution , 2015, ACM Trans. Graph..

[22]  R. Ramamoorthi,et al.  Frequency domain normal map filtering , 2007, SIGGRAPH 2007.

[23]  Diego Gutierrez,et al.  Effects of Approximate Filtering on the Appearance of Bidirectional Texture Functions , 2014, IEEE Transactions on Visualization and Computer Graphics.

[24]  Steve Marschner,et al.  Rendering glints on high-resolution normal-mapped specular surfaces , 2014, ACM Trans. Graph..

[25]  Xinhao Liu,et al.  Noise level estimation using weak textured patches of a single noisy image , 2012, 2012 19th IEEE International Conference on Image Processing.

[26]  Michael Toksvig Mipmapping Normal Maps , 2005, J. Graph. Tools.

[27]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[28]  Homan Igehy,et al.  Tracing ray differentials , 1999, SIGGRAPH.

[29]  Hendrik P. A. Lensch,et al.  Product Importance Sampling for Light Transport Path Guiding , 2016, Comput. Graph. Forum.

[30]  Anjul Patney,et al.  Filtering distributions of normals for shading antialiasing , 2016, High Performance Graphics.

[31]  E. Heitz Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs , 2014 .

[32]  Marc Olano,et al.  LEAN mapping , 2010, I3D '10.

[33]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[34]  Hans-Peter Seidel,et al.  Illuminating micro geometry based on precomputed visibility , 2000, SIGGRAPH.

[35]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[36]  Hujun Bao,et al.  Real‐Time Linear BRDF MIP‐Mapping , 2017, Comput. Graph. Forum.

[37]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[38]  Fabrice Neyret,et al.  Hybrid mesh‐volume LoDs for all‐scale pre‐filtering of complex 3D assets , 2017, Comput. Graph. Forum.

[39]  H. Jensen,et al.  Wavelet importance sampling: efficiently evaluating products of complex functions , 2005, SIGGRAPH 2005.

[40]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[41]  Kenneth I. Joy,et al.  Shell maps , 2005, ACM Trans. Graph..

[42]  Min H. Kim,et al.  Practical multiple scattering for rough surfaces , 2018, ACM Trans. Graph..

[43]  Derek Nowrouzezahrai,et al.  Fast Soft Self‐Shadowing on Dynamic Height Fields , 2008, Comput. Graph. Forum.

[44]  Steve Marschner,et al.  Position-normal distributions for efficient rendering of specular microstructure , 2016, ACM Trans. Graph..

[45]  Kei Iwasaki,et al.  Interactive bi-scale editing of highly glossy materials , 2012, ACM Trans. Graph..

[46]  Stephen Lin,et al.  Filtering and Rendering of Resolution-Dependent Reflectance Models , 2008, IEEE Transactions on Visualization and Computer Graphics.

[47]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[48]  Derek Nowrouzezahrai,et al.  Eurographics Symposium on Rendering 2009 Fast Global Illumination on Dynamic Height Fields , 2022 .

[49]  Shree K. Nayar,et al.  Generalization of Lambert's reflectance model , 1994, SIGGRAPH.

[50]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[51]  Tomas Akenine-Möller,et al.  Wavelet importance sampling: efficiently evaluating products of complex functions , 2005, ACM Trans. Graph..

[52]  B. Smith,et al.  Geometrical shadowing of a random rough surface , 1967 .