Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance.

[1]  Tao Wang,et al.  Direct Incorporation of Magnetic Constituents within Ordered Mesoporous Carbon−Silica Nanocomposites for Highly Efficient Electromagnetic Wave Absorbers , 2010 .

[2]  F. Luo,et al.  Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption , 2011 .

[3]  M. C. Rezende,et al.  REFLECTIVITY OF HYBRID MICROWAVE ABSORBERS BASED ON NIZN FERRITE AND CARBON BLACK DOI 10.5028/jatm.2012.04032512 , 2012 .

[4]  S. Riddell,et al.  Polypyrrole Based Microwave Absorbers , 1998 .

[5]  Guiqin Wang,et al.  Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder , 2009 .

[6]  Jae-Hung Han,et al.  Application of MWNT-added glass fabric/epoxy composites to electromagnetic wave shielding enclosures , 2007 .

[7]  R. K. Seth,et al.  Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites , 2011 .

[8]  Lixi Wang,et al.  A new microwave absorber based on antimony-doped tin oxide and ferrite composite with excellent electromagnetic match , 2010 .

[9]  Li Wang,et al.  Polymeric nanocomposites for electromagnetic wave absorption , 2009 .

[10]  Shuangchun Wen,et al.  Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials , 2008 .

[11]  T. Ting,et al.  Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz , 2011 .

[12]  Jae-Hung Han,et al.  Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles , 2009 .

[13]  Qingfang Liu,et al.  Broadband and thin microwave absorber of nickel-zinc ferrite/carbonyl iron composite , 2009 .

[14]  Musa R. Kamal,et al.  Estimation of the volume resistivity of electrically conductive composites , 1997 .

[15]  B. Wen,et al.  Preparation and microwave absorption properties of basalt fiber/nickel core–shell heterostructures , 2010 .

[16]  F. Wen,et al.  Analyses on double resonance behavior in microwave magnetic permeability of multiwalled carbon nanotube composites containing Ni catalyst , 2008 .

[17]  R. Gong,et al.  Optimization of two-layer electromagnetic wave absorbers composed of magnetic and dielectric materials in gigahertz frequency band , 2005 .

[18]  C. Nan,et al.  Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites , 2007 .

[19]  Qing Chen,et al.  Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes , 2004 .

[20]  C. Berndt,et al.  Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles , 2014, Journal of Nanoparticle Research.

[21]  K. Ostrikov,et al.  Microstructure and electromagnetic characteristics of Ni nanoparticle film coated carbon microcoils , 2009 .

[22]  Jae-Hee Oh,et al.  The microwave absorbing phenomena of ferrite microwave absorbers , 1993 .

[23]  Jae-Hung Han,et al.  Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures , 2006 .

[24]  T. S. Srivatsan,et al.  Processing and fabrication of advanced materials III , 1994 .

[25]  Mao-Sheng Cao,et al.  Computation design and performance prediction towards a multi-layer microwave absorber , 2002 .

[26]  Masahiro Itoh,et al.  Novel rare earth recovery process on Nd–Fe–B magnet scrap by selective chlorination using NH4Cl , 2009 .

[27]  K. Raju,et al.  Structural engineering of polyurethane coatings for high performance applications , 2007 .

[28]  San-Yuan Chen,et al.  Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method , 2005 .

[29]  I. Ford,et al.  The electromagnetic properties of nanoparticle colloids at radio and microwave frequencies , 2007 .

[30]  T. K. Chaki,et al.  Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites , 2000 .

[31]  Dormann,et al.  Thermal variation of the relaxation time of the magnetic moment of gamma -Fe2O3 nanoparticles with interparticle interactions of various strengths. , 1996, Physical review. B, Condensed matter.

[32]  M. Hashim,et al.  Broadening of EM Energy-Absorption Frequency Band by Micrometer-to-Nanometer Grain Size Reduction in NiZn Ferrite , 2013, IEEE Transactions on Magnetics.

[33]  M. Toprak,et al.  Synthesis and characterization of polypyrrole–BaFe12O19 nanocomposite , 2010 .

[34]  F. Gazeau,et al.  Quasi-elastic neutron scattering on γ-Fe2O3 nanoparticles , 1997 .

[35]  Z. Zhang,et al.  Absorption properties of carbon black/silicon carbide microwave absorbers , 2011 .

[36]  T. Giannakopoulou,et al.  Microwave behavior of ferrites prepared via sol–gel method , 2002 .

[37]  John F. Shaeffer,et al.  Radar Cross Section , 2004 .

[38]  Qiuyun Ouyang,et al.  Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties , 2013 .

[39]  J. Sláma,et al.  Dispersion of complex permeability and EM-wave absorbing characteristics of polymer-based composites with dual ferrite filler , 2008 .

[40]  W. Coffey,et al.  Thermally Activated Relaxation Time of a Single Domain Ferromagnetic Particle Subjected to a Uniform Field at an Oblique Angle to the Easy Axis: Comparison with Experimental Observations , 1998 .

[41]  Veena Choudhary,et al.  Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding , 2009 .

[42]  Hong Bi,et al.  Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite , 2008 .

[43]  Yukio Hishikawa,et al.  Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region , 2003 .

[44]  K. J. Vinoy,et al.  Radar Absorbing Materials: From Theory to Design and Characterization , 2011 .

[45]  Huahui He,et al.  Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites , 2000 .

[46]  M. Gu,et al.  Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film , 2007 .

[47]  F. Kang,et al.  Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber , 2008 .

[48]  J. Zhao,et al.  Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites , 2015 .

[49]  M. Itoh,et al.  Broadband electromagnetic wave absorbers prepared by grading magnetic powder density , 2010 .

[50]  K. Hu,et al.  Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites , 2007 .

[51]  T. C. Shami,et al.  Development of hard/soft ferrite nanocomposite for enhanced microwave absorption , 2011 .

[52]  N. Chen,et al.  Microstructure and Microwave Absorption Properties of Y-Substituted Ni-Zn Ferrites , 2012 .

[53]  Xiang‐qian Shen,et al.  Double-layer microwave absorber based on nanocrystalline Zn0.5Ni0.5Fe2O4/α-Fe microfibers , 2012 .

[54]  R. Mittra,et al.  Design of lightweight, broad-band microwave absorbers using genetic algorithms , 1993 .

[55]  J. Sláma,et al.  RF electromagnetic wave absorbing properties of ferrite polymer composite materials , 2006 .

[56]  Wei Zhang,et al.  Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide–Co3O4 nanocomposites , 2013 .

[57]  R. Wu,et al.  Ultrathin broadband microwave absorbers using ferromagnetic films , 2014 .

[58]  T. C. Goel,et al.  Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites , 2007 .

[59]  Y. Shimizu,et al.  Electromagnetic wave absorption properties of carbonyl iron-ferrite/ PMMA composites fabricated by hybridization method , 2007 .

[60]  Lina Wu,et al.  Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber , 2013 .

[61]  Davide Micheli,et al.  X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation , 2010 .

[62]  S. Jacobo,et al.  Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites , 2009 .

[63]  Mirabel Cerqueira Rezende,et al.  Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz , 2010 .

[64]  T. Lasri,et al.  Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties , 2012 .

[65]  Haigen Shen,et al.  Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling , 2005 .

[66]  L. C. Folgueras,et al.  Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline , 2007 .

[67]  C. Dale Owens,et al.  A Survey of the Properties and Applications of Ferrites below Microwave Frequencies , 1956, Proceedings of the IRE.

[68]  T. Ting,et al.  Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials , 2013 .

[69]  Muyu Zhao,et al.  Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material , 2000 .

[70]  K. Suetake,et al.  Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics , 1970 .

[71]  Shaoli Guo,et al.  Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption , 2012 .

[72]  Xiangxuan Liu,et al.  Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites , 2014 .

[73]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[74]  Ying Wang,et al.  Nanostructures and Nanomaterials: Synthesis, Properties and Applications , 2004 .

[75]  M. Drofenik,et al.  Electromagnetic wave absorption of polymeric nanocomposites based on ferrite with a spinel and hexagonal crystal structure , 2012 .

[76]  J. Alcock,et al.  Epoxy‐Based Fibre Reinforced Nanocomposites , 2007 .

[77]  M. C. Rezende,et al.  Microwave Absorbing Coatings Based on a Blend of Nitrile Rubber, EPDM Rubber and Polyaniline , 2005 .

[78]  Xiaobo Liu,et al.  The preparation and wide frequency microwave absorbing properties of tri-substituted-bisphthalonitrile/Fe3O4 magnetic hybrid microspheres , 2014 .

[79]  H. Zou,et al.  Electromagnetic and microwave absorbing properties of Co2Z-type hexaferrites doped with La3+ , 2009 .

[80]  X. Batlle,et al.  Finite-size effects in fine particles: magnetic and transport properties , 2002 .

[81]  M. Tian,et al.  Determining factors for high performance silicone rubber microwave absorbing materials , 2011 .

[82]  Sahrim Ahmad,et al.  Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites , 2010 .

[83]  Xijiang Han,et al.  Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness , 2013 .

[84]  J. Sláma,et al.  Complex permeability of LiZn/MnZn/PVC composite materials , 2010 .

[85]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[86]  Alexander Korzhenko,et al.  Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers , 2003 .

[87]  Jiurong Liu,et al.  Electromagnetic wave absorption properties of Fe3O4 octahedral nanocrystallines in gigahertz range , 2011 .

[88]  Jun Cai,et al.  Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler , 2013 .

[89]  Chensha Li,et al.  Microwave Absorption Properties of Polyester Composites Incorporated with Heterostructure Nanofillers with Carbon Nanotubes as Carriers , 2015 .

[90]  Zeng-min Shen,et al.  Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes , 2009 .

[91]  Shicheng Wei,et al.  Effect of heat treatment on microwave absorption properties of Ni–Zn–Mg–La ferrite nanoparticles , 2014 .

[92]  Li Xiaogang,et al.  Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers , 2009 .

[93]  A. N. Yusoff,et al.  Electromagnetic and absorption properties of some TPNR/Fe3 O4/YIG microwave absorbers as revealed by a microwave vector network analyser and specular absorber method , 2007 .

[94]  C. Das,et al.  Graphene and MWCNT: Potential Candidate for Microwave Absorbing Materials , 2012 .

[95]  B. Fan,et al.  Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. , 2015, Physical chemistry chemical physics : PCCP.

[96]  T. Qiu,et al.  Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite , 2007 .

[97]  M. C. Rezende,et al.  Reactive processing and evaluation of butadiene–styrene copolymer/polyaniline conductive blends , 2006 .

[98]  Yuping Duan,et al.  Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black , 2010 .

[99]  Lixi Wang,et al.  Hydrothermal carbonization synthesis of BaZn2F16O27/carbon composite microwave absorbing materials and its electromagnetic performance , 2015, Journal of Materials Science: Materials in Electronics.

[100]  Xiaoyun Li,et al.  Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials , 2006 .

[101]  Kuldeep Singh,et al.  Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz , 2008 .

[102]  S. Kolev,et al.  Microwave absorption of ferrite powders in a polymer matrix , 2006 .

[103]  Y. J. Chen,et al.  Microwave absorption properties of the ZnO nanowire-polyester composites , 2004 .

[104]  F. Luo,et al.  Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings , 2010 .

[105]  L. Zhen,et al.  Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance , 2009 .

[106]  Fashen Li,et al.  Microwave absorption and Mössbauer studies of Fe3O4 nanoparticles , 2009 .

[107]  Jianguo Guan,et al.  Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: Microwave electromagnetic and absorbing properties , 2011 .

[108]  Paul R. Chalker,et al.  Thermal stability of neodymium aluminates high-κ dielectric deposited by liquid injection MOCVD using single-source heterometallic alkoxide precursors , 2012 .

[109]  T. C. Goel,et al.  Preparation of nanosize polyaniline and its utilization for microwave absorber. , 2007, Journal of nanoscience and nanotechnology.

[110]  J. Sláma,et al.  Particle Size and Concentration Effect on Permeability and EM-Wave Absorption Properties of Hybrid Ferrite Polymer Composites , 2010, IEEE Transactions on Magnetics.

[111]  Sahrim Ahmad,et al.  Electromagnetic and absorption properties of some microwave absorbers , 2002 .

[112]  F. Luo,et al.  A cost-effective approach to improve dielectric property of SiC powder , 2009 .

[113]  S. Hosseini,et al.  Synthesis, characterization, and microwave-absorbing properties of polypyrrole/MnFe 2 O 4 nanocomposite , 2012 .

[114]  J. Dormann,et al.  Magnetic Relaxation in Fine‐Particle Systems , 2007 .

[115]  V. Bregar,et al.  Advantages of ferromagnetic nanoparticle composites in microwave absorbers , 2004, IEEE Transactions on Magnetics.

[116]  K. Churn,et al.  Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies , 1991 .

[117]  S. Hosseini,et al.  Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite , 2011 .

[118]  Pallab Bhattacharya,et al.  Microwave absorption behaviour of MWCNT based nanocomposites in X-band region , 2013 .

[119]  Wancheng Zhou,et al.  Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber , 2010 .

[120]  Christine C. Dantas,et al.  Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials , 2011, 1105.5969.

[121]  Ying Huang,et al.  Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: Synthesis and enhanced electromagnetic absorption properties , 2013 .

[122]  Xian Wang,et al.  Annealing effect on the magnetic properties of Fe–Co–Zr alloy flakes , 2008 .

[123]  C. Lacabanne,et al.  Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes−Epoxy Resin Composites , 2003 .

[124]  Qiao-ling Li,et al.  Preparation and characterization of polypyrrole/nano-SrFe12O19 composites by in situ polymerization method , 2009 .

[125]  S. Yoshikado,et al.  Fabrication of the Composite Ferrite Electromagnetic Wave Absorber , 1998 .

[126]  Jin-Bong Kim,et al.  Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band , 2008 .

[127]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .