Preconditioners for rank deficient least squares problems

Abstract In this paper we present a method for computing sparse preconditioners for iteratively solving rank deficient least squares problems (LS) by the LSMR method. The main idea of the method proposed is to update an incomplete factorization computed for a regularized problem to recover the solution of the original one. The numerical experiments for a wide set of matrices arising from different science and engineering applications show that the preconditioner proposed, in most cases, can be successfully applied to accelerate the convergence of the iterative Krylov subspace method.

[1]  José Marín,et al.  Updating preconditioners for modified least squares problems , 2017, Numerical Algorithms.

[2]  Jun-Feng Yin,et al.  GMRES Methods for Least Squares Problems , 2010, SIAM J. Matrix Anal. Appl..

[3]  Ja Scott On using Cholesky-based factorizations for solving rank-deficient sparse linear least-squares problems , 2016 .

[4]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2011, SIAM J. Sci. Comput..

[5]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[6]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[7]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[8]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[9]  Nicholas I. M. Gould,et al.  The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems , 2017, ACM Trans. Math. Softw..

[10]  Simon R. Arridge,et al.  Iterated preconditioned LSQR method for inverse problems on unstructured grids , 2014 .

[11]  Juana Cerdán,et al.  Low-rank updates of balanced incomplete factorization preconditioners , 2017, Numerical Algorithms.

[12]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[13]  Na Li,et al.  MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..

[14]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.