Global adjoint tomography: first-generation model

We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Frechet derivatives were calculated in 3D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named ‘Titan’, a computer with 18,688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3D mantle model S362ANI (Kustowski et al. 2008) with 3D crustal model Crust2.0 (Bassin et al. 2000). We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used ‘crustal corrections’. We used data from 253 earthquakes in the magnitude range 5.8~ ≤ ~Mw~ ≤ ~7.0. For the first 12 iterations, we combined ∼30 s body-wave data with ∼60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ∼17 s body waves with ∼45 s surface waves. We started using 180 min-long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone, and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution of continental-scale studies in some areas, for example underneath Yellowstone. This is a consequence of our multi-scale smoothing strategy, in which we define our smoothing operator as a function of the approximate Hessian kernel, thereby smoothing gradients less wherever we have good ray coverage, such as underneath North America.

[1]  Göran Ekström,et al.  Effects of three-dimensional Earth structure on CMT earthquake parameters , 2010 .

[2]  Jeroen Tromp,et al.  Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion , 2016, 1604.05768.

[3]  G. Nolet,et al.  Global upper‐mantle structure from finite‐frequency surface‐wave tomography , 2004 .

[4]  Dimitri Komatitsch,et al.  Fluid–solid coupling on a cluster of GPU graphics cards for seismic wave propagation , 2011 .

[5]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[6]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[7]  M. N. Toksöz,et al.  Three dimensional model of seismic velocity variation in the Earth's mantle , 1976 .

[8]  Jeroen Tromp,et al.  Double-difference adjoint seismic tomography , 2016, 1607.01811.

[9]  S. Lebedev,et al.  Global shear speed structure of the upper mantle and transition zone , 2013 .

[10]  Lion Krischer,et al.  ObsPy: a bridge for seismology into the scientific Python ecosystem , 2015 .

[11]  Jean-Pierre Vilotte,et al.  Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models , 2003 .

[12]  T. Song,et al.  Subduction of oceanic asthenosphere: Evidence from sub‐slab seismic anisotropy , 2012 .

[13]  En-Jui Lee,et al.  Automating seismic waveform analysis for full 3-D waveform inversions , 2013 .

[14]  Maxwell L. Rudolph,et al.  Viscosity jump in Earth’s mid-mantle , 2015, Science.

[15]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[16]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[17]  Baoli Wang,et al.  Multiscale Full Waveform Inversion Using GPU , 2012 .

[18]  Jeroen Tromp,et al.  Seismic waveform inversion best practices: regional, global, and exploration test cases , 2016 .

[19]  Zheng Wang,et al.  Spherical-spline parameterization of three-dimensional Earth models , 1995 .

[20]  Guust Nolet,et al.  Three‐dimensional sensitivity kernels for surface wave observables , 2004 .

[21]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[22]  Carl Tape,et al.  An automated time-window selection algorithm for seismic tomography , 2009 .

[23]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[24]  R. Snieder,et al.  Are we exceeding the limits of the Great Circle Approximation in global surface wave tomography? , 2001 .

[25]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[26]  F. Dahlen,et al.  Fréchet kernels for body-wave amplitudes , 2001 .

[27]  Lapo Boschi,et al.  A comparison of tomographic and geodynamic mantle models , 2002 .

[28]  Andreas Fichtner,et al.  The adjoint method in seismology: I. Theory , 2006 .

[29]  Laura Ermert,et al.  Foundations for a multiscale collaborative global Earth model , 2015 .

[30]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[31]  Jean Braun,et al.  Subducting slabs: Jellyfishes in the Earth's mantle , 2010 .

[32]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[33]  J. Trampert,et al.  Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s , 2003 .

[34]  Jeannot Trampert,et al.  Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds , 1995 .

[35]  Qinya Liu,et al.  Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels , 2004 .

[36]  A. Fichtner,et al.  Imaging mantle plumes with instantaneous phase measurements of diffracted waves , 2012 .

[37]  D. Komatitsch,et al.  Effects of crust and mantle heterogeneity on PP/P and SS/S amplitude ratios , 2002 .

[38]  Fred F. Pollitz,et al.  Motion of the Scotia Sea plates , 2003 .

[39]  Jeannot Trampert,et al.  Assessment of global phase velocity models , 2001 .

[40]  Andrew P. Valentine,et al.  The impact of approximations and arbitrary choices on geophysical images , 2016 .

[41]  J. Marigo,et al.  Second order homogenization of the elastic wave equation for non-periodic layered media , 2007 .

[42]  Andreas Fichtner,et al.  Theoretical background for continental‐ and global‐scale full‐waveform inversion in the time–frequency domain , 2008 .

[43]  D. L. Anderson,et al.  Petrological constraints on seismic anisotropy , 1989 .

[44]  J. Tromp,et al.  Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons , 2015 .

[45]  Gordon Erlebacher,et al.  High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster , 2010, J. Comput. Phys..

[46]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[47]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[48]  George Helffrich,et al.  The Seismic Analysis Code by George Helffrich , 2013 .

[49]  S. Freitas,et al.  Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil , 2010 .

[50]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[51]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[52]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[53]  Tariq Alkhalifah,et al.  Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion , 2011 .

[54]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[55]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[56]  J. Tromp,et al.  Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle , 2013 .

[57]  J. Woodhouse,et al.  Global radially anisotropic mantle structure from multiple datasets: A review, current challenges, and outlook , 2014 .

[58]  Jeroen Tromp,et al.  Measurements and global models of surface wave propagation , 1997 .

[59]  Jean Virieux,et al.  Building starting models for full waveform inversion from wide‐aperture data by stereotomography , 2013 .

[60]  Jeroen Tromp,et al.  Adjoint centroid-moment tensor inversions , 2011 .

[61]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[62]  C. Faccenna,et al.  Subduction-triggered magmatic pulses: A new class of plumes? , 2010 .

[63]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[64]  George Biros,et al.  Parallel Multiscale Gauss-Newton-Krylov Methods for Inverse Wave Propagation , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[65]  Andreas Fichtner,et al.  The adjoint method in seismology—: II. Applications: traveltimes and sensitivity functionals , 2006 .

[66]  G. Nolet,et al.  A formalism for nonlinear inversion of seismic surface waves , 1986 .

[67]  Tiankai Tu,et al.  High Resolution Forward And Inverse Earthquake Modeling on Terascale Computers , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[68]  Jeroen Tromp,et al.  Supplementary information for Structure of the European Upper Mantle revealed by adjoint tomography , 2012 .

[69]  G. Ekström,et al.  An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms , 2014 .

[70]  S. Operto,et al.  lastic frequency-domain full-waveform inversion , 2009 .

[71]  Frederik J. Simons,et al.  Multiscale adjoint waveform-difference tomography using wavelets , 2014 .

[72]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[73]  Yanhua O. Yuan,et al.  Multiscale adjoint waveform tomography for surface and body waves , 2015 .

[74]  A. Dziewoński,et al.  Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities , 2001 .

[75]  B. Romanowicz,et al.  A simple method for improving crustal corrections in waveform tomography , 2010 .

[76]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[77]  Barbara Romanowicz,et al.  Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography , 2014 .

[78]  A. Tarantola LINEARIZED INVERSION OF SEISMIC REFLECTION DATA , 1984 .

[79]  Carl Tape,et al.  Finite‐frequency tomography using adjoint methods—Methodology and examples using membrane surface waves , 2007 .

[80]  J. Montagner,et al.  Vectorial tomography—II. Application to the Indian Ocean , 1988 .

[81]  Yaxun Tang Imaging and velocity analysis by target-oriented wavefield inversion , 2011 .

[82]  Henri Calandra,et al.  A Data Centric View of Large-Scale Seismic Imaging Workflows , 2013 .

[83]  R. Hilst,et al.  Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms , 2006 .

[84]  Guust Nolet,et al.  Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .

[85]  J. Montagner Where Can Seismic Anisotropy Be Detected in the Earth’s Mantle? In Boundary Layers... , 1998 .

[86]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[87]  Guust Nolet,et al.  Seismic tomography : with applications in global seismology and exploration geophysics , 1987 .

[88]  Matthew J. Fouch,et al.  The Yellowstone Hotspot: Plume or Not? , 2012 .

[89]  T. Leeuwen,et al.  Resolution analysis by random probing , 2015 .

[90]  Yi Wang,et al.  Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method , 2015 .

[91]  J. Tromp,et al.  Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements , 2011 .

[92]  Emmanuel Chaljub,et al.  Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core , 2003, physics/0308102.

[93]  Harmen Bijwaard,et al.  Non‐linear global P‐wave tomography by iterated linearized inversion , 2000 .

[94]  Barbara Romanowicz,et al.  Broad plumes rooted at the base of the Earth's mantle beneath major hotspots , 2015, Nature.

[95]  P. Bird An updated digital model of plate boundaries , 2003 .

[96]  Albert Tarantola,et al.  Theoretical background for the inversion of seismic waveforms including elasticity and attenuation , 1988 .

[97]  George Helffrich,et al.  The Seismic Analysis Code: Acknowledgements , 2013 .

[98]  Jeroen Tromp,et al.  Normal-mode constraints on the structure of the Earth , 1996 .

[99]  Robert D. van der Hilst,et al.  Travel-time tomography of the European-Mediterranean mantle down to 1400 km , 1993 .

[100]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[101]  Hua-wei Zhou,et al.  A high-resolution P wave model for the top 1200 km of the mantle , 1996 .

[102]  Kenneth L. Pierce,et al.  Is the track of the Yellowstone hotspot driven by a deep mantle plume? - Review of volcanism, faulting, and uplift in light of new data , 2009 .

[103]  S. Operto,et al.  A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging , 2013 .

[104]  Carl Tape,et al.  Adjoint Tomography of the Southern California Crust , 2009, Science.

[105]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[106]  Jeroen Tromp,et al.  Seismic structure of the European upper mantle based on adjoint tomography , 2015 .

[107]  Arie Shoshani,et al.  Hello ADIOS: the challenges and lessons of developing leadership class I/O frameworks , 2014, Concurr. Comput. Pract. Exp..

[108]  Steven M. Day,et al.  Misfit Criteria for Quantitative Comparison of Seismograms , 2006 .

[109]  James A. Smith,et al.  An Adaptable Seismic Data Format , 2016 .

[110]  Barbara Romanowicz,et al.  Global mantle shear velocity model developed using nonlinear asymptotic coupling theory , 1996 .

[111]  Miron Livny,et al.  Pegasus, a workflow management system for science automation , 2015, Future Gener. Comput. Syst..

[112]  Andreas Fichtner,et al.  Resolution analysis in full waveform inversion , 2011 .

[113]  J. Tromp,et al.  Strategies in adjoint tomography , 2015 .

[114]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[115]  J. Woodhouse,et al.  Long-period body wave traveltimes through the crust: implication for crustal corrections and seismic tomography , 2009 .

[116]  G. Ekström,et al.  The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth's mantle , 2016 .

[117]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[118]  A. Deuss,et al.  SP 12 RTS : a degree-12 model of shear-and compressional-wave velocity for Earth ’ s mantle , 2015 .

[119]  Paul Friberg,et al.  Near real‐time simulations of global CMT earthquakes , 2010 .

[120]  A. Deuss,et al.  SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle , 2016 .

[121]  M. Cara,et al.  Seismic Anisotropy in the Earth , 1991 .

[122]  G. Ekström A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s , 2011 .

[123]  Guust Nolet,et al.  On the potential of recording earthquakes for global seismic tomography by low‐cost autonomous instruments in the oceans , 2009 .

[124]  Eugene M. Lavely,et al.  Three‐dimensional seismic models of the Earth's mantle , 1995 .

[125]  Bradford H. Hager,et al.  Large‐scale heterogeneities in the lower mantle , 1977 .

[126]  L. Boschi,et al.  New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies , 2002 .

[127]  T. G. Cowling,et al.  The non-radial oscillations of polytropic stars , 1941 .

[128]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[129]  Lion Krischer,et al.  Large‐Scale Seismic Inversion Framework , 2015 .

[130]  J. Woodhouse,et al.  Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland. , 1999, Science.

[131]  J. Trampert,et al.  On the robustness of global radially anisotropic surface wave tomography , 2010 .

[132]  A. Dziewoński,et al.  Whole Earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle? , 2000 .

[133]  Jean-Pierre Vilotte,et al.  Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids , 2003 .

[134]  E. Engdahl,et al.  Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle , 2004, Science.

[135]  E. Engdahl,et al.  A new global model for P wave speed variations in Earth's mantle , 2008 .

[136]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[137]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[138]  Jeroen Tromp,et al.  Surface wave sensitivity: mode summation versus adjoint SEM , 2011 .

[139]  Jeroen Tromp,et al.  Spectral-element moment tensor inversions for earthquakes in Southern California , 2004 .

[140]  J. Tromp,et al.  Mapping Tectonic Deformation in the Crust and Upper Mantle Beneath Europe and the North Atlantic Ocean , 2013, Science.

[141]  Guust Nolet,et al.  Seismic monitoring in the oceans by autonomous floats , 2015, Nature Communications.

[142]  A. Dziewoński,et al.  Seismic Surface Waves and Free Oscillations in a Regionalized Earth Model , 1982 .

[143]  Barbara Romanowicz,et al.  Inferring upper-mantle structure by full waveform tomography with the spectral element method , 2011 .

[144]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[145]  Thomas H. Jordan,et al.  Generalized seismological data functionals , 1992 .

[146]  George Helffrich,et al.  The Seismic Analysis Code: A Primer and User's Guide , 2013 .

[147]  En-Jui Lee,et al.  Full‐3‐D tomography for crustal structure in Southern California based on the scattering‐integral and the adjoint‐wavefield methods , 2014 .

[148]  Robert B. Smith,et al.  The Yellowstone hotspot , 1994 .

[149]  B. Kennett,et al.  Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle , 1998 .

[150]  P. Shearer,et al.  Shear and compressional velocity models of the mantle from cluster analysis of long‐period waveforms , 2008 .

[151]  Barbara Romanowicz,et al.  Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere , 2013, Science.

[152]  E. Bozdağ,et al.  On crustal corrections in surface wave tomography , 2008 .

[153]  Barbara Romanowicz,et al.  Importance of crustal corrections in the development of a new global model of radial anisotropy , 2010 .

[154]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[155]  J. Tromp,et al.  Finite-Frequency Kernels Based on Adjoint Methods , 2006 .

[156]  M. Faccenda,et al.  Upper- and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs , 2016, Nature Communications.

[157]  R. Hilst,et al.  Automated multimode inversion of surface and S waveforms , 2005 .

[158]  G. Masters,et al.  Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust , 2013 .