SAR imagery segmentation by statistical region growing and hierarchical merging

This paper presents an algorithm to segment synthetic aperture radar (SAR) images, corrupted by speckle noise. Most standard segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, i.e. without any preprocessing step. The algorithm includes a statistical region growing procedure combined with hierarchical region merging. The region growing step oversegments the input radar image, thus enabling region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for performance improvement. We have tested and assessed the proposed technique on artificially speckled image and real SAR data.

[1]  W. H. Williams,et al.  Probability Theory and Mathematical Statistics , 1964 .

[2]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[3]  Frédéric Galland,et al.  Minimum description length synthetic aperture radar image segmentation , 2003, IEEE Trans. Image Process..

[4]  A.J. Plaza,et al.  Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[5]  Philippe Réfrégier,et al.  Hierarchical Feature-Based Classification Approach for Fast and User-Interactive SAR Image Interpretation , 2009, IEEE Geoscience and Remote Sensing Letters.

[6]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  James Tilton Hierarchical Image Segmentation , 2003 .

[8]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[9]  David A. Clausi,et al.  SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using Semantics , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[11]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Luciano da Fontoura Costa,et al.  Evaluation of speckle noise MAP filtering algorithms applied to SAR images , 2003 .

[13]  A. M. Walker,et al.  Probability Theory and Mathematical Statistics. By Marek Fisz. Pp. xvi, 677. 115s. 1963. (John Wiley and Sons: New York, London) , 1965, The Mathematical Gazette.

[14]  Richard Geoffrey White,et al.  Comparing the performance of SAR image segmentation algorithms , 1992 .

[15]  A. Lopes,et al.  A statistical and geometrical edge detector for SAR images , 1988 .

[16]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Fátima N. S. de Medeiros,et al.  Filtering Effects on SAR Images Segmentation , 2004, ICT.

[19]  Hong Sun,et al.  Supervised SAR Image MPM Segmentation Based on Region-Based Hierarchical Model , 2006, IEEE Geoscience and Remote Sensing Letters.

[20]  Rod Cook,et al.  MUM (Merge Using Moments) segmentation for SAR images , 1994, Remote Sensing.

[21]  Domingo A. Gagliardini,et al.  Automatic computation of speckle standard deviation in SAR images , 2000 .

[22]  Philippe Marthon,et al.  An optimal multiedge detector for SAR image segmentation , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[24]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[25]  David A. Clausi,et al.  IRGS: Image Segmentation Using Edge Penalties and Region Growing , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Peikun He,et al.  An improved ratio edge detector for target detection in SAR images , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[27]  Alexander A. Sawchuk,et al.  Adaptive restoration of images with speckle , 1987, IEEE Trans. Acoust. Speech Signal Process..

[28]  William A. Pearlman,et al.  Speckle filtering of SAR images based on adaptive windowing , 1999 .

[29]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  J. Le Moigne Refining Image Segmentation by Integration of Edge and Region Data , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[31]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[32]  K. Thomson,et al.  Hierarchical image segmentation using local and adaptive similarity rules , 1992 .

[33]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[34]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Savita Gupta,et al.  A versatile technique for visual enhancement of medical ultrasound images , 2007, Digit. Signal Process..

[36]  Philippe Marthon,et al.  Edge Detection and Segmentation of SAR Images in Homogeneous Regions , 1999 .