Development of Saturable Absorbers for Laser Passive Q‐Switching near 1.5 μm Based on Transparent Ceramic Co2+:MgAl2O4
暂无分享,去创建一个
Konstantin V. Yumashev | Zeev Burshtein | Pavel Loiko | Ehud Galun | N. A. Skoptsov | A. Goldstein | P. Loiko | K. Yumashev | Adrian Goldstein | Z. Burshtein | N. Kuleshov | I. Glazunov | E. Galun | Nikolai V. Kuleshov | Ilya Glazunov | N. Skoptsov
[1] K. Yumashev,et al. Passive Q-switching of erbium glass laser by magnesium aluminosilicate sitall with cobalt ions , 2007 .
[2] F. McClung,et al. Giant Optical Pulsations from Ruby , 1962 .
[3] Alexander M. Malyarevich,et al. Glass-ceramics with γ-Ga2O3:Co2+ nanocrystals: saturable absorber for 1.5–1.7 μm Er lasers , 2015 .
[4] M Birnbaum,et al. Co(2+):YSGG saturable absorber Q switch for infrared erbium lasers. , 1995, Optics letters.
[5] A. Boccaccini,et al. Effect of Chemical Composition on the Optical Properties and Fracture Toughness of Transparent Magnesium Aluminate Spinel Ceramics , 2005 .
[6] R. D. Shannon,et al. Effective ionic radii in oxides and fluorides , 1969 .
[7] Ralph H. Page,et al. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .
[8] Zeev Burshtein,et al. Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser , 2003 .
[9] Jun Xu,et al. A Co2+-doped alumina-rich Mg0.4Al2.4O4 spinel crystal as saturable absorber for a LD pumped Er: glass microchip laser at 1535 nm , 2011 .
[10] Alexander M. Malyarevich,et al. Formation and Passive Q-Switch Performance of Glass-Ceramics Containing Co2+-Doped Spinel Nanocrystals , 2008 .
[11] M. Hefetz,et al. Transparent polycrystalline MgAl2O4 spinel with submicron grains, by low temperature sintering , 2009 .
[12] Z. Burshtein. Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media , 2010 .
[13] R. Feldman,et al. Excited-state absorption at 1.57 μm in U2+:CaF2 and Co2+:ZnSe saturable absorbers , 2001 .
[14] A. Goldstein. Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review) , 2012 .
[15] R. Feldman,et al. Dynamics of chromium ion valence transformations in Cr, Ca: YAG crystals used as laser gain and passive Q-switching media , 2003 .
[16] A. V. Shestakov,et al. Glass Ceramics Co2+ Saturable Absorber Q-switch for 1.3 - 1.6 µm spectral region , 1998 .
[17] A. Kozłowska,et al. Nonlinear Absorption of Submicrometer Grain-Size Cobalt-Doped Magnesium Aluminate Transparent Ceramics , 2014 .
[18] K. Yumashev,et al. Anisotropy of nonlinear absorption in Co2+:MgAl2O4 crystal , 2007 .
[19] K. Yumashev. Saturable absorber Co 2+ :MgAl 2 O 4 crystal for Q switching of 1.34-µm Nd 3+ :YAlO 3 and 1.54-µm Er 3+ :glass lasers , 1999 .
[20] Richard Moncorgé,et al. Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals , 2002 .
[21] I. A. Denisov,et al. Linear and nonlinear optical properties of cobalt-doped zinc aluminum glass ceramics , 2003 .
[22] Kyeong-Hee Lee,et al. Magnesium- and zinc-aluminosilicate cobalt-doped glass ceramics as saturable absorbers for diode-pumped 1.3-microm laser. , 2004, Applied optics.
[23] A. Ikesue,et al. Ceramic Lasers by Akio Ikesue , 2013 .
[24] R. J. Hill,et al. Systematics of the spinel structure type , 1979 .