Propagation of olfactory information in Drosophila

Investigating how information propagates between layers in the olfactory system is an important step toward understanding the olfactory code. Each glomerular output projection neuron (PN) receives two sources of input: the olfactory receptor neurons (ORNs) of the same glomerulus and interneurons that innervate many glomeruli. We therefore asked how these inputs interact to produce PN output. We used receptor gene mutations to silence all of the ORNs innervating a specific glomerulus and recorded PN activity with two-photon calcium imaging and electrophysiology. We found evidence for balanced excitatory and inhibitory synaptic inputs but saw little or no response in the absence of direct ORN input. We next asked whether any transformation of activity occurs at successive layers of the antennal lobe. We found a strong link between PN firing and dendritic calcium elevation, the latter of which is tightly correlated with calcium activity in ORN axons, supporting the idea of glomerular propagation of olfactory information. Finally, we showed that odors are represented by a sparse population of PNs. Together, these results are consistent with the idea that direct receptor input provides the main excitatory drive to PNs, whereas interneurons modulate PN output. Balanced excitatory and inhibitory interneuron input may provide a mechanism to adjust PN sensitivity.

[1]  C Giovanni Galizia,et al.  The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). , 2006, Journal of neurobiology.

[2]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[3]  S. Sachse,et al.  Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. , 2002, Journal of neurophysiology.

[4]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[5]  Andrey Rzhetsky,et al.  A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna , 1999, Cell.

[6]  T. Sejnowski,et al.  Model of Transient Oscillatory Synchronization in the Locust Antennal Lobe , 2001, Neuron.

[7]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[8]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[10]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[11]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[12]  A. Borst,et al.  Mechanisms of dendritic calcium signaling in fly neurons. , 2001, Journal of neurophysiology.

[13]  P. Hiesinger,et al.  Three‐dimensional reconstruction of the antennal lobe in Drosophila melanogaster , 1999, The Journal of comparative neurology.

[14]  J. Carlson,et al.  Targeted Mutation of a Drosophila Odor Receptor Defines Receptor Requirement in a Novel Class of Sensillum , 2003, The Journal of Neuroscience.

[15]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[16]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[17]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[18]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[19]  Reinhard F. Stocker,et al.  The organization of the chemosensory system in Drosophila melanogaster: a rewiew , 2004, Cell and Tissue Research.

[20]  Gelperin,et al.  OSCILLATORY DYNAMICS AND INFORMATION PROCESSING IN OLFACTORY SYSTEMS , 2022 .

[21]  Vikas Bhandawat,et al.  Excitatory Interactions between Olfactory Processing Channels in the Drosophila Antennal Lobe , 2007, Neuron.

[22]  G. Struhl,et al.  Direct and Long-Range Action of a Wingless Morphogen Gradient , 1996, Cell.

[23]  A. Chess,et al.  Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe , 2000, Nature Neuroscience.

[24]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[25]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[26]  J. Renger,et al.  Activity-dependent Functional and Developmental Plasticity of Drosophila Neurons , 1998 .

[27]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  John R. Carlson,et al.  A Novel Family of Divergent Seven-Transmembrane Proteins Candidate Odorant Receptors in Drosophila , 1999, Neuron.

[29]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[30]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[31]  A. Chess,et al.  Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. , 1999, Genomics.

[32]  Hong Lei,et al.  Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons , 2002, Nature Neuroscience.

[33]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001 .

[34]  G. Rubin,et al.  The BDGP Gene Disruption Project , 2004, Genetics.

[35]  G. Miesenböck,et al.  Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe , 2007, Cell.

[36]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[37]  R. Menzel,et al.  Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera , 1999, The Journal of physiology.

[38]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[39]  Gero Miesenböck,et al.  Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly , 2002, Neuron.

[40]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[41]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.